Visualizing Algebraic Curves: from Riemann to Grothendieck

被引:0
作者
Shabat, George B. [1 ,2 ]
机构
[1] Russian State Univ Humanities, Miuss Sq 6,GSP 3, Moscow 125993, Russia
[2] Inst Theoret & Expt Phys, Moscow 117218, Russia
来源
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS | 2008年 / 1卷 / 01期
关键词
Riemann surface; algebraic curves; Hurwitz space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the smallest possible ramification. The corresponding pairs are represented by only finite set of points in the individual Hurwitz space, but the set of Riemann surfaces admitting the meromorphic functions with the smallest possible number of critical values is dense in the moduli space.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 16 条
  • [1] Adrianov N.N., ARXIV07102658VMATHAG
  • [2] Artamkin I.V., FUNKT ANALI IN PRESS
  • [3] ON GALOIS EXTENSIONS OF A MAXIMAL CYCLOTOMIC FIELD
    BELYI, GV
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (02): : 247 - 256
  • [4] Griffiths P., 1994, PRINCIPLES ALGEBRAIC, DOI DOI 10.1002/9781118032527
  • [5] Grothendieck Alexandre, 1997, GEOMETRIC GALOIS ACT, V242, P5
  • [6] Klein F., 1878, MATH ANN, V14, P428, DOI [DOI 10.1007/BF01677143, 10.1007/BF01677143]
  • [7] INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MATRIX AIRY FUNCTION
    KONTSEVICH, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) : 1 - 23
  • [8] Lando S., 2004, GRAPHS SURFACES THEI
  • [9] Mulase M., MATHAG0107119 ARXIV
  • [10] Riemann B., 1857, J FR REINE ANGEW MAT, V54, P101, DOI 10.1515/crll.1857.54.101