ON THE ASYMPTOTIC EXACTNESS OF ERROR ESTIMATORS FOR LINEAR TRIANGULAR FINITE-ELEMENTS

被引:44
作者
DURAN, R
MUSCHIETTI, MA
RODRIGUEZ, R
机构
[1] NATL UNIV LA PLATA,FAC CIENCIAS EXACTAS,DEPT MATEMAT,RA-1900 LA PLATA,ARGENTINA
[2] PURDUE UNIV,CTR APPL MATH,W LAFAYETTE,IN 47907
关键词
D O I
10.1007/BF01385773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of elliptic problems. We analyze two estimators based on recovery operators for the gradient of the approximate solution. By using superconvergence results we prove their asymptotic exactness under regularity assumptions on the mesh and the solution. One of the estimators can be easily computed in terms of the jumps of the gradient of the finite element approximation. This estimator is equivalent to the error in the energy norm under rather general conditions. However, we show that for the asymptotic exactness, the regularity assumption on the mesh is not merely technical. While doing this, we analyze the relation between superconvergence and asymptotic exactness for some particular examples.
引用
收藏
页码:107 / 127
页数:21
相关论文
共 25 条
[1]  
AINSWORTH M, 1988, NA8803 NUM AN REP
[2]  
Andreev AB., 1988, NUMER METH PART D E, V4, P15
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]   ANALYSIS OF OPTIMAL FINITE-ELEMENT MESHES IN R [J].
BABUSKA, I ;
RHEINBOLDT, WC .
MATHEMATICS OF COMPUTATION, 1979, 33 (146) :435-463
[5]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[6]   A POSTERIORI ERROR ANALYSIS OF FINITE-ELEMENT SOLUTIONS FOR ONE-DIMENSIONAL PROBLEMS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :565-589
[7]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[8]  
BABUSKA I, 1981, BN968 IPST U MAR TEC
[9]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[10]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO