DIOPHANTINE APPROXIMATION AND A LOWER BOUND FOR HAUSDORFF DIMENSION

被引:62
作者
DODSON, MM
RYNNE, BP
VICKERS, JAG
机构
[1] UNIV DUNDEE,DEPT MATH,DUNDEE DD1 4HN,SCOTLAND
[2] UNIV SOUTHAMPTON,DEPT MATH,SOUTHAMPTON SO9 5NH,HANTS,ENGLAND
关键词
D O I
10.1112/S0025579300012791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:59 / 73
页数:15
相关论文
共 19 条
[1]  
Arnold VI., 1983, GEOMETRICAL METHODS
[2]  
BAKER A, 1970, P LOND MATH SOC, V21, P1
[3]  
BERNIK VI, 1988, DIOPHANTINE APPROXIM
[4]  
BERNIK VI, 1988, NEW ADV TRANSCENDENC, P25
[5]  
Besicovitch A.S., 1934, J LOND MATH SOC, V9, P126
[6]   THE HAUSDORFF DIMENSION OF SYSTEMS OF LINEAR-FORMS [J].
BOVEY, JD ;
DODSON, MM .
ACTA ARITHMETICA, 1986, 45 (04) :337-358
[7]  
Cassels J.W.S., 1957, INTRO DIOPHANTINE AP
[8]   EXCEPTIONAL SETS IN KOLMOGOROV-ARNOLD-MOSER THEORY [J].
DODSON, MM ;
VICKERS, JAG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (03) :349-374
[9]   METRIC DIOPHANTINE APPROXIMATION AND HAUSDORFF DIMENSION ON MANIFOLDS [J].
DODSON, MM ;
RYNNE, BP ;
VICKERS, JAG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 :547-558
[10]  
Eggleston H., 1952, P LOND MATH SOC, V54, P42, DOI [10.1112/plms/s2-54.1.42, DOI 10.1112/PLMS/S2-54.1.42]