Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws

被引:6
作者
Abreu, Eduardo [1 ]
Perez, John [2 ]
Santo, Arthur [1 ]
机构
[1] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Campinas, SP, Brazil
[2] ITM Inst Univ, Fac Ciencias Exactas & Aplicadas, Medellin, Colombia
来源
UIS INGENIERIAS | 2018年 / 17卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Conservation laws; Lagrangian-Eulerian; finite volume;
D O I
10.18273/revuin.v17n1-2018018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new finite control volume in a Lagrangian-Eulerian framework is presented (see papers [1, 28]), in which a local space-time domain is studied, in order to design a locally conservative scheme. Such scheme accounts for the delicate nonlinear balance between the numerical approximations of the hyperbolic flux and the source term for balance law problems linked to the purely hyperbolic character of conservation laws. Furthermore, by combining the ideas of this new approach, we give a formal construction of a new algorithm for solving several nonlinear hyperbolic conservation laws in two space dimensions. Here, a set of pertinent numerical experiments for distinct models is presented to evidence that we are calculating the correct qualitatively good solutions.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 32 条
[1]   A new finite volume approach for transport models and related applications with balancing source terms [J].
Abreu, E. ;
Lambert, W. ;
Perez, J. ;
Santo, A. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 :2-28
[2]  
[Anonymous], 2005, C M DAFERMOS HYPERBO, V227, P1
[3]  
Aquino J., 2007, International Journal of Nuclear Energy Science and Technology, V3, P196, DOI 10.1504/IJNEST.2007.014656
[4]   A Lagrangian strategy for the numerical simulation of radionuclide transport problems [J].
Aquino, J. ;
Francisco, A. S. ;
Pereira, F. ;
Pereira, T. Jordem ;
Amaral Souto, H. P. .
PROGRESS IN NUCLEAR ENERGY, 2010, 52 (03) :282-291
[5]  
Bressan A, 2007, CONTEMP MATH, V426, P129
[7]   A CRITICAL ANALYSIS OF THE MODIFIED EQUATION TECHNIQUE OF WARMING AND HYETT [J].
CHANG, SC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 86 (01) :107-126
[8]   HYPERBOLIC CONSERVATION-LAWS WITH STIFF RELAXATION TERMS AND ENTROPY [J].
CHEN, GQ ;
LEVERMORE, CD ;
LIU, TP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (06) :787-830
[9]   New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws [J].
Christov, Ivan ;
Popov, Bojan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) :5736-5757
[10]   MONOTONE-DIFFERENCE APPROXIMATIONS FOR SCALAR CONSERVATION-LAWS [J].
CRANDALL, MG ;
MAJDA, A .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :1-21