KAM THEORY FOR PARTICLES IN PERIODIC POTENTIALS

被引:34
作者
LEVI, M [1 ]
机构
[1] BOSTON UNIV,DEPT MATH,BOSTON,MA 02215
关键词
D O I
10.1017/S0143385700005897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the system of the form x + V'(x) = p(t) with periodic V and p and with [p] = 0 is near-integrable for large energies. In particular, most (in the sense of Lebesgue measure) fast solutions are quasiperiodic, provided V epsilon-C(5) and p epsilon-L1; furthermore, for any solution x(t) there exists a velocity bound c for all time: \x(t) < c for all t epsilon-R. For any real number r there exists a solution with that average velocity, and when r is rational, this solution can be chosen to be periodic.
引用
收藏
页码:777 / 785
页数:9
相关论文
共 17 条
[1]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[2]  
BIRKHOFF GD, 1966, AM MATH SOC C PUBL, V9, P165
[3]  
DIERKERHOFF R, 1984, LNM, V1125, P9
[4]  
DIERKERHOFF R, 221984 RUHR U BOCH P
[5]  
FRANKS J, IN PRESS ANN MATH
[6]  
GRUNER G, 1985, PHYS REP, V119, P119
[7]  
Herman M.R., 1986, ASTERISQUE, V144
[8]  
Herman M.R., 1983, ASTERISQUE, V1, P103
[9]   EXISTENCE OF SECOND FIXED-POINT - CORRECTION TO PERIODIC-SOLUTIONS OF X'+F(X,T)=O VIA POINCARE-BIRKHOFF THEOREM [J].
JACOBOWITZ, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (01) :148-149
[10]  
Katok A., 1982, ERGOD THEOR DYN SYST, V2, P183