GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS

被引:99
作者
CASETTI, L
LIVI, R
PETTINI, M
机构
[1] UNIV BOLOGNA,DIPARTMENTO FIS,I-40126 BOLOGNA,ITALY
[2] OSSERV ASTROFIS ARCETRI,I-50125 FLORENCE,ITALY
[3] IST NAZL FIS NUCL,I-50125 FLORENCE,ITALY
[4] IST NAZL FIS NUCL,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1103/PhysRevLett.74.375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general method to describe Hamiltonian chaos in the thermodynamic limit is presented which is based on a model equation independent of the dynamics. This equation is derived from a geometric approach to Hamiltonian chaos recently proposed, and provides an analytic estimate of the largest Lyapunov exponent λ. The particular case of the Fermi-Pasta-Ulam β-model Hamiltonian is considered, showing an excellent agreement between the values of λ predicted by the model and those obtained with computer simulations of the tangent dynamics. © 1995 The American Physical Society.
引用
收藏
页码:375 / 378
页数:4
相关论文
共 13 条
[1]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[2]   ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY [J].
CASETTI, L ;
PETTINI, M .
PHYSICAL REVIEW E, 1993, 48 (06) :4320-4332
[3]  
Davis H. T., 1962, INTRO NONLINEAR DIFF, P59
[4]  
do Carmo M. P., 1992, RIEMANNIAN GEOMETRY
[5]  
EISENHART LP, 1929, ANN MATH, V30, P591
[6]   ENSEMBLE DEPENDENCE OF FLUCTUATIONS WITH APPLICATION TO MACHINE COMPUTATIONS [J].
LEBOWITZ, JL ;
PERCUS, JK ;
VERLET, L .
PHYSICAL REVIEW, 1967, 153 (01) :250-&
[7]   CHAOTIC BEHAVIOR IN NONLINEAR HAMILTONIAN-SYSTEMS AND EQUILIBRIUM STATISTICAL-MECHANICS [J].
LIVI, R ;
PETTINI, M ;
RUFFO, S ;
VULPIANI, A .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) :539-559
[8]  
LIVI R, 1989, NONLINEAR DYNAMICS
[9]   GEOMETRICAL HINTS FOR A NONPERTURBATIVE APPROACH TO HAMILTONIAN-DYNAMICS [J].
PETTINI, M .
PHYSICAL REVIEW E, 1993, 47 (02) :828-850
[10]   RELAXATION PROPERTIES AND ERGODICITY BREAKING IN NONLINEAR HAMILTONIAN-DYNAMICS [J].
PETTINI, M ;
LANDOLFI, M .
PHYSICAL REVIEW A, 1990, 41 (02) :768-783