GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS

被引:98
作者
CASETTI, L
LIVI, R
PETTINI, M
机构
[1] UNIV BOLOGNA,DIPARTMENTO FIS,I-40126 BOLOGNA,ITALY
[2] OSSERV ASTROFIS ARCETRI,I-50125 FLORENCE,ITALY
[3] IST NAZL FIS NUCL,I-50125 FLORENCE,ITALY
[4] IST NAZL FIS NUCL,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1103/PhysRevLett.74.375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general method to describe Hamiltonian chaos in the thermodynamic limit is presented which is based on a model equation independent of the dynamics. This equation is derived from a geometric approach to Hamiltonian chaos recently proposed, and provides an analytic estimate of the largest Lyapunov exponent λ. The particular case of the Fermi-Pasta-Ulam β-model Hamiltonian is considered, showing an excellent agreement between the values of λ predicted by the model and those obtained with computer simulations of the tangent dynamics. © 1995 The American Physical Society.
引用
收藏
页码:375 / 378
页数:4
相关论文
共 13 条
  • [1] KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS
    BENETTIN, G
    GALGANI, L
    STRELCYN, JM
    [J]. PHYSICAL REVIEW A, 1976, 14 (06): : 2338 - 2345
  • [2] ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY
    CASETTI, L
    PETTINI, M
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4320 - 4332
  • [3] Davis H. T., 1962, INTRO NONLINEAR DIFF, P59
  • [4] do Carmo M. P., 1992, RIEMANNIAN GEOMETRY
  • [5] EISENHART LP, 1929, ANN MATH, V30, P591
  • [6] ENSEMBLE DEPENDENCE OF FLUCTUATIONS WITH APPLICATION TO MACHINE COMPUTATIONS
    LEBOWITZ, JL
    PERCUS, JK
    VERLET, L
    [J]. PHYSICAL REVIEW, 1967, 153 (01): : 250 - &
  • [7] CHAOTIC BEHAVIOR IN NONLINEAR HAMILTONIAN-SYSTEMS AND EQUILIBRIUM STATISTICAL-MECHANICS
    LIVI, R
    PETTINI, M
    RUFFO, S
    VULPIANI, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) : 539 - 559
  • [8] LIVI R, 1989, NONLINEAR DYNAMICS
  • [9] GEOMETRICAL HINTS FOR A NONPERTURBATIVE APPROACH TO HAMILTONIAN-DYNAMICS
    PETTINI, M
    [J]. PHYSICAL REVIEW E, 1993, 47 (02): : 828 - 850
  • [10] RELAXATION PROPERTIES AND ERGODICITY BREAKING IN NONLINEAR HAMILTONIAN-DYNAMICS
    PETTINI, M
    LANDOLFI, M
    [J]. PHYSICAL REVIEW A, 1990, 41 (02): : 768 - 783