DEGENERATION OF HAMILTONIAN MONODROMY CYCLES

被引:25
作者
BATES, L [1 ]
ZOU, MR [1 ]
机构
[1] UNIV ARIZONA,DEPT MATH,TUCSON,AZ 85721
关键词
D O I
10.1088/0951-7715/6/2/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Geometric monodromy is an obstruction for the global existence of action variables. In this paper, we study two examples which have non-trivial monodromy and exhibit degeneration phenomena. The first is the classical Kirchhoff case of motion of a rigid body in an infinite ideal fluid. The second is a spherical pendulum subject to an axially symmetric quadratic potential.
引用
收藏
页码:313 / 335
页数:23
相关论文
共 9 条
[1]  
Bates L., 1991, J APPL MATH PHYS, V42, P837
[2]  
CUSHMAN R, 1985, LECT NOTES MATH, V1139, P12
[3]  
CUSHMAN R, 1983, CWI NEWSLETTER, V1, P4
[4]  
CUSHMAN R, 1991, GEOMETRY HAMILTONIAN, P33
[5]   ON GLOBAL ACTION-ANGLE COORDINATES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :687-706
[6]  
Milne-Thomson L, 1968, THEORETICAL HYDRODYN
[7]   THE HAMILTONIAN-FORMALISM AND A MANY-VALUED ANALOG OF MORSE-THEORY [J].
NOVIKOV, SP .
RUSSIAN MATHEMATICAL SURVEYS, 1982, 37 (05) :1-56
[8]  
VANDERMEER JC, 1985, SPRINGER LECTURE NOT, V1160
[9]  
Weyl H, 1946, CLASSICAL GROUPS