Existence of periodic solutions for first-order totally nonlinear neutral differential equations with variable delay

被引:0
作者
Ardjouni, Abdelouaheb [1 ]
Djoudi, Ahcene [1 ]
机构
[1] Univ Annaba, Fac Sci, Dept Math, POB 12, Annaba, Algeria
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2014年 / 55卷 / 02期
关键词
periodic solution; nonlinear neutral differential equation; large contraction; integral equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a modification of Krasnoselskii's fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii's theorem, Nonlinear Stud. 9 (2002), 181-190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay x'(t) = -a(t)h(x(t)) + c(t)x' (t - g(t))Q' (x (t - g(t))) G (t, x(t), x(t - g(t))), has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits very nicely for applying the modification of Krasnoselskii's theorem so that periodic solutions exist.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 17 条
[1]  
Adivar M, 2012, HACET J MATH STAT, V41, P1
[2]  
Ardjouni A., 2012, SARAJEVO J MATH, V8, P107
[3]  
Ardjouni A., 2010, REND SEM MAT U POLIT, V68, P349
[4]  
Ardjouni A, 2011, STUD U BABES-BOL MAT, V56, P7
[5]   Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale [J].
Ardjouni, Abdelouaheb ;
Djoudi, Ahcene .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) :3061-3069
[6]  
Burton T., 2002, NONLINEAR STUD, V9, P181
[7]  
Burton T. A., 2005, STABILITY PERIODIC S
[8]   Integral equations, implicit functions, and fixed points [J].
Burton, TA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (08) :2383-2390
[9]   A fixed-point theorem of Krasnoselskii [J].
Burton, TA .
APPLIED MATHEMATICS LETTERS, 1998, 11 (01) :85-88
[10]  
Deham H., 2010, ELECT J DIFFERENTIAL, V2010