RANKL-RANK interaction in immune regulatory systems

被引:44
作者
Akiyama, Taishin [1 ]
Shinzawa, Miho [1 ]
Akiyama, Nobuko [1 ]
机构
[1] Univ Tokyo, Inst Med Sci, Div Cellular & Mol Biol, Dept Canc Biol, Tokyo 1088639, Japan
关键词
RANKL; T cells; Dendritic cells; Thymus; Medullary thymic epithelial cells; Lymphoid tissue inducer cells; Lymph node; M cells; Peyer's patches;
D O I
10.5312/wjo.v3.i9.142
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
The interaction between the receptor activator of NF-kappa B ligand (RANKL) and its receptor RANK plays a critical role in the development and function of diverse tissues. This review summarizes the studies regarding the functions of RANKL signaling in immune regulatory systems. Previous in vitro and in vivo studies have indicated that the RANKL signal promotes the survival of dendritic cells (DCs), thereby activating the immune response. In addition, RANKL signaling to DCs in the body surface barriers controls self-tolerance and oral-tolerance through regulatory T cell functions. In addition to regulating DC functions, the RANKL and RANK interaction is critical for the development and organization of several lymphoid organs. The RANKL signal initiates the formation of clusters of lymphoid tissue inducer cells, which is crucial for lymph node organogenesis. Moreover, the RANKL-RANK interaction controls the differentiation of M cells, specialized epithelial cells in mucosal tissues, that take up and transcytose antigen particles to control the immune response to pathogens or commensal bacterium. The development of epithelial cells localized in the thymic medulla (mTECs) is also regulated by the RANKL-RANK signal. Given that the unique property of mTECs to express a wide variety of tissue-specific self-antigens is critical for the elimination of self-antigen reactive T cells in the thymus, the RANKL-RANK interaction contributes to the suppression of autoimmunity. Future studies on the roles of the RANKL-RANK system in immune regulatory functions would be informative for the development and application of inhibitors of RANKL signaling for disease treatment. (C) 2012 Baishideng. All rights reserved.
引用
收藏
页码:142 / 150
页数:9
相关论文
共 88 条
[1]   Dependence of self-tolerance on TRAF6-directed development of thymic stroma [J].
Akiyama, T ;
Maeda, S ;
Yamane, S ;
Ogino, K ;
Kasai, M ;
Kajiura, F ;
Matsumoto, M ;
Inoue, J .
SCIENCE, 2005, 308 (5719) :248-251
[2]   The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance [J].
Akiyama, Taishin ;
Shimo, Yusuke ;
Yanai, Hiromi ;
Qin, Junwen ;
Ohshima, Daisuke ;
Maruyama, Yuya ;
Asaumi, Yukiko ;
Kitazawa, Juli ;
Takayanagi, Hiroshi ;
Penninger, Josef M. ;
Matsumoto, Mitsuru ;
Nitta, Takeshi ;
Takahama, Yousuke ;
Inoue, Jun-ichiro .
IMMUNITY, 2008, 29 (03) :423-437
[3]   A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function [J].
Anderson, DM ;
Maraskovsky, E ;
Billingsley, WL ;
Dougall, WC ;
Tometsko, ME ;
Roux, ER ;
Teepe, MC ;
DuBose, RF ;
Cosman, D ;
Galibert, L .
NATURE, 1997, 390 (6656) :175-179
[4]   Thymic epithelial cells: working class heroes for T cell development and repertoire selection [J].
Anderson, Graham ;
Takahama, Yousuke .
TRENDS IN IMMUNOLOGY, 2012, 33 (06) :256-263
[5]   Projection of an immunological self shadow within the thymus by the aire protein [J].
Anderson, MS ;
Venanzi, ES ;
Klein, L ;
Chen, ZB ;
Berzins, SP ;
Turley, SJ ;
von Boehmer, H ;
Bronson, R ;
Dierich, A ;
Benoist, C ;
Mathis, D .
SCIENCE, 2002, 298 (5597) :1395-1401
[6]   Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin [J].
Ashcroft, AJ ;
Cruickshank, SM ;
Croucher, PL ;
Perry, MJ ;
Rollinson, S ;
Lippitt, JM ;
Child, JA ;
Dunstan, C ;
Felsburg, PJ ;
Morgan, GJ ;
Carding, SR .
IMMUNITY, 2003, 19 (06) :849-861
[7]   TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation [J].
Bachmann, MF ;
Wong, BR ;
Josien, R ;
Steinman, RM ;
Oxenius, A ;
Choi, Y .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 189 (07) :1025-1031
[8]   Transcriptional programming of the dendritic cell network [J].
Belz, Gabrielle T. ;
Nutt, Stephen L. .
NATURE REVIEWS IMMUNOLOGY, 2012, 12 (02) :101-113
[9]  
Bishop GA, 2007, ADV EXP MED BIOL, V597, P131
[10]   Formation of a functional thymus initiated by a postnatal epithelial progenitor cell [J].
Bleul, Conrad C. ;
Corbeaux, Tatiana ;
Reuter, Alexander ;
Fisch, Paul ;
Moenting, Juergen Schulte ;
Boehm, Thomas .
NATURE, 2006, 441 (7096) :992-996