THE ETA-INVARIANT, PINC BORDISM, AND EQUIVARIANT SPINC BORDISM FOR CYCLIC 2-GROUPS

被引:0
作者
BAHRI, A [1 ]
GILKEY, P [1 ]
机构
[1] UNIV OREGON,EUGENE,OR 97403
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 24
页数:24
相关论文
共 24 条
[1]  
ANDERSON DW, 1966, B AM MATH SOC, V72, P257
[2]  
Atiyah M. F., 1964, TOPOLOGY S1, V3, P3, DOI [DOI 10.1016/0040-9383(64)90003-5, 10.1016/0040-9383(64)90003-5]
[3]  
Atiyah M.-F., 1967, K THEORY
[4]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[5]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[6]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[7]  
BAHRI A, IN PRESS P AM MATH S
[8]  
CARTAN H, 1956, HOMOLOGICAL ALGEBRA
[9]  
CONNER PE, 1964, DIFFERENTIABLE PERIO
[10]  
DAVIS JF, 1984, MATH REPORTS, V2, P223