EVOLUTION OF A 2-PARAMETER CHAOTIC DYNAMICS FROM UNIVERSAL ATTRACTORS

被引:39
作者
CELASCHI, S [1 ]
ZIMMERMAN, RL [1 ]
机构
[1] UNIV SAO PAULO,FFCL RP,BR-14100 RIBEIRAO PRETO,BRAZIL
关键词
D O I
10.1016/0375-9601(87)90107-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:447 / 451
页数:5
相关论文
共 14 条
[1]   TRANSITIONS AND DISTRIBUTION-FUNCTIONS FOR CHAOTIC SYSTEMS [J].
CHANG, SJ ;
WRIGHT, J .
PHYSICAL REVIEW A, 1981, 23 (03) :1419-1433
[2]  
Chirikov BV, 1979, PHYS REP, V52, P265
[3]  
Collet P., 1980, ITERATED MAPS INTERV
[4]   CHAOTIC DYNAMICS OF A BOUNCING BALL [J].
EVERSON, RM .
PHYSICA D, 1986, 19 (03) :355-383
[5]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[6]   CHAOTIC ATTRACTORS IN CRISIS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1507-1510
[7]   QUANTITATIVE MEASUREMENT OF THE PARAMETER DEPENDENCE OF THE ONSET OF A CRISIS IN A DRIVEN NONLINEAR OSCILLATOR [J].
HILBORN, RC .
PHYSICAL REVIEW A, 1985, 31 (01) :378-382
[8]   THE DYNAMICS OF REPEATED IMPACTS WITH A SINUSOIDALLY VIBRATING TABLE [J].
HOLMES, PJ .
JOURNAL OF SOUND AND VIBRATION, 1982, 84 (02) :173-189
[9]   2-PARAMETER STUDY OF THE ROUTES TO CHAOS [J].
LIBCHABER, A ;
FAUVE, S ;
LAROCHE, C .
PHYSICA D, 1983, 7 (1-3) :73-84
[10]  
Liberman M. A., 1985, PHYS REV LETT, V55, P908