RANDOM DISCRIMINANTS

被引:7
作者
LU, IL [1 ]
RICHARDS, D [1 ]
机构
[1] UNIV VIRGINIA,DIV STAT,CHARLOTTESVILLE,VA 22903
关键词
MOMENT MATRICES; MIXTURE DISTRIBUTIONS; RANDOM DISCRIMINANTS; SELBERG BETA INTEGRAL; STOCHASTIC BOUNDS; U-STATISTICS; VANDERMONDE DETERMINANTS;
D O I
10.1214/aos/1176349406
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X1, X2,...,X(n) be a random sample from a continuous univariate distribution F, and let DELTA = PI 1 less-than-or-equal-to i < j less-than-or-equal-to n(X(i) - X(j))2 denote the t, or square of the Vandermonde determinant, constructed from the random sample. The statistic DELTA arises in the study of moment matrices and inference for mixture distributions, the spectral theory of random matrices, control theory and statistical physics. In this paper, we study the probability distribution of DELTA. When X1,...,X(n) is a random sample from a normal, gamma or beta population, we use Selberg's beta integral formula to obtain stochastic representations for the exact distribution of DELTA. Further, we obtain stochastic bound s for DELTA in the normal and gamma cases. Using the theory of U-statistics, we derive the asymptotic distribution of DELTA under certain conditions on F.
引用
收藏
页码:1982 / 2000
页数:19
相关论文
共 26 条
[11]  
KALMAN R, 1961, 1ST P IFAC C MOSC, V2, P521
[12]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[13]   MOMENT MATRICES - APPLICATIONS IN MIXTURES [J].
LINDSAY, BG .
ANNALS OF STATISTICS, 1989, 17 (02) :722-740
[14]   ON THE DETERMINANTS OF MOMENT MATRICES [J].
LINDSAY, BG .
ANNALS OF STATISTICS, 1989, 17 (02) :711-721
[15]  
LU I, 1991, THESIS U VIRGINIA
[16]  
Marshall A. W., 1979, INEQUALITIES THEORY, V143
[17]  
Mehta M. L., 1990, RANDOM MATRICES
[18]  
Muirhead, 2005, ASPECTS MULTIVARIATE
[19]  
PEDDADA SD, 1991, J MULTIVARIATE ANAL, V39, P202
[20]  
RICHARDS D, 1989, IMA VOL MATH APPL, V18, P109