ERGODIC PROPERTIES OF PIECEWISE-LINEAR MAPS ON FRACTAL REPELLERS

被引:24
作者
TASAKI, S [1 ]
SUCHANECKI, Z [1 ]
ANTONIOU, I [1 ]
机构
[1] FREE UNIV BRUSSELS,FAC SCI,B-1050 BRUSSELS,BELGIUM
关键词
D O I
10.1016/0375-9601(93)90657-L
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a class of one-dimensional piecewise linear maps admitting fractal invariant sets and uncountably many invariant measures and show that they are ergodic (exact). A physical measure is selected as the invariant measure with maximum information dimension. We also briefly discuss the spectral decomposition of the Frobenius-Perron operator.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 40 条
[1]   SPECTRAL DECOMPOSITION OF THE RENYI MAP [J].
ANTONIOU, I ;
TASAKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (01) :73-94
[2]  
ANTONIOU I, UNPUB
[3]  
Boas R. P., 1964, POLYNOMIAL EXPANSION
[4]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[5]  
BOWEN R, 1975, LECTURE NOTES MATH, V470
[6]  
de Rham G., 1956, REND SEM MAT TORINO, V16, P101
[7]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]   SCALING PROPERTIES OF MULTIFRACTALS AS AN EIGENVALUE PROBLEM [J].
FEIGENBAUM, MJ ;
PROCACCIA, I ;
TEL, T .
PHYSICAL REVIEW A, 1989, 39 (10) :5359-5372
[9]   DIFFUSION, EFFUSION, AND CHAOTIC SCATTERING - AN EXACTLY SOLVABLE LIOUVILLIAN DYNAMICS [J].
GASPARD, P .
JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (5-6) :673-747
[10]   DIFFUSION IN UNIFORMLY HYPERBOLIC ONE-DIMENSIONAL MAPS AND APPELL POLYNOMIALS [J].
GASPARD, P .
PHYSICS LETTERS A, 1992, 168 (01) :13-17