ERGODIC PROPERTIES OF PIECEWISE-LINEAR MAPS ON FRACTAL REPELLERS

被引:24
作者
TASAKI, S [1 ]
SUCHANECKI, Z [1 ]
ANTONIOU, I [1 ]
机构
[1] FREE UNIV BRUSSELS,FAC SCI,B-1050 BRUSSELS,BELGIUM
关键词
D O I
10.1016/0375-9601(93)90657-L
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a class of one-dimensional piecewise linear maps admitting fractal invariant sets and uncountably many invariant measures and show that they are ergodic (exact). A physical measure is selected as the invariant measure with maximum information dimension. We also briefly discuss the spectral decomposition of the Frobenius-Perron operator.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 40 条
  • [1] SPECTRAL DECOMPOSITION OF THE RENYI MAP
    ANTONIOU, I
    TASAKI, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (01): : 73 - 94
  • [2] ANTONIOU I, UNPUB
  • [3] Boas R. P., 1964, POLYNOMIAL EXPANSION
  • [4] THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS
    BOHR, T
    RAND, D
    [J]. PHYSICA D, 1987, 25 (1-3): : 387 - 398
  • [5] BOWEN R, 1975, LECTURE NOTES MATH, V470
  • [6] de Rham G., 1956, REND SEM MAT TORINO, V16, P101
  • [7] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656
  • [8] SCALING PROPERTIES OF MULTIFRACTALS AS AN EIGENVALUE PROBLEM
    FEIGENBAUM, MJ
    PROCACCIA, I
    TEL, T
    [J]. PHYSICAL REVIEW A, 1989, 39 (10): : 5359 - 5372
  • [9] DIFFUSION, EFFUSION, AND CHAOTIC SCATTERING - AN EXACTLY SOLVABLE LIOUVILLIAN DYNAMICS
    GASPARD, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (5-6) : 673 - 747
  • [10] DIFFUSION IN UNIFORMLY HYPERBOLIC ONE-DIMENSIONAL MAPS AND APPELL POLYNOMIALS
    GASPARD, P
    [J]. PHYSICS LETTERS A, 1992, 168 (01) : 13 - 17