COLLOCATION WITH CHEBYSHEV POLYNOMIALS FOR A HYPERSINGULAR INTEGRAL-EQUATION ON AN INTERVAL

被引:24
|
作者
ERVIN, VJ
STEPHAN, EP
机构
[1] CLEMSON UNIV,DEPT MATH SCI,CLEMSON,SC 29634
[2] UNIV HANNOVER,INST ANGEW MATH,W-3000 HANNOVER,GERMANY
基金
美国国家科学基金会;
关键词
COLLOCATION METHOD; HYPERSINGULAR INTEGRAL EQUATION; CHEBYSHEV POLYNOMIALS;
D O I
10.1016/0377-0427(92)90267-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A collocation method for a first-kind integral equation with a hypersingular kernel on an interval is analysed. Chebyshev polynomials of the second kind are used as the basis functions for the approximation, and the collocation points are chosen to be Chebyshev quadrature points. In our analysis we introduce Sobolev norms that reflect the singular structure of the exact solution at the endpoints of the interval. Numerical experiments are presented which underline the theoretical estimates.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条