BERRY PHASE FOR ANHARMONIC-OSCILLATORS

被引:7
作者
DATTA, N
GHOSH, G
机构
[1] Saha Institute of Nuclear Physics, Calcutta 700 064
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevA.46.5358
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study.classical and quantum anholonomy for nonlinear oscillators which support linear or quadratic spectra. The validity of the semiclassical relation between Berry's phase and Hannay's angle is investigated.
引用
收藏
页码:5358 / 5362
页数:5
相关论文
共 18 条
[1]   GROUP-THEORY APPROACH TO SCATTERING [J].
ALHASSID, Y ;
GURSEY, F ;
IACHELLO, F .
ANNALS OF PHYSICS, 1983, 148 (02) :346-380
[2]  
Berry M V., 1989, GEOMETRIC PHASES PHY
[4]   SEMICLASSICAL APPROXIMATIONS IN WAVE MECHANICS [J].
BERRY, MV ;
MOUNT, KE .
REPORTS ON PROGRESS IN PHYSICS, 1972, 35 (04) :315-+
[5]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[6]  
DUTTAROY B, UNPUB
[7]  
Flugge S, 1971, PRACTICAL QUANTUM ME
[8]  
Froman N., 1965, CONTRIBUTIONS THEORY, V1st
[9]  
GENDENSHTEIN LE, 1983, JETP LETT+, V38, P356
[10]   DYNAMIC SYMMETRY AND EXACT SOLVABILITY [J].
GHOSH, G ;
ROY, TK ;
GANGOPADHYAY, R .
PHYSICAL REVIEW A, 1987, 36 (03) :1449-1451