Dendrite-type attractors of infinite iterated function systems

被引:0
作者
Dumitru, Dan [1 ]
机构
[1] Spiru Haret Univ Bucharest, Fac Math & Comp Sci, 13 Ion Ghica Str, Bucharest, Romania
关键词
Attractors; Infinite iterated function systems; Dendrite; Locally connected; Arcwise conected;
D O I
10.1007/s13370-014-0272-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to establish a necessary and sufficient condition for the attractor of an infinite iterated function system to be a dendrite. In that sense, we will consider the associated graph of an attractor and prove that, in some conditions, the attractor is a dendrite if and only if the associated graph is an infinite tree.
引用
收藏
页码:1161 / 1169
页数:9
相关论文
共 42 条
[21]   Orbital fuzzy iterated function systems [J].
Mihail, Alexandru ;
Savu, Irina .
FUZZY SETS AND SYSTEMS, 2023, 467
[22]   Cyclic Multivalued Iterated Function Systems [J].
Pasupathi, R. ;
Chand, A. K. B. ;
Navascues, M. A. .
MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 :245-256
[23]   Relational generalized iterated function systems [J].
Abraham, Izabella ;
Miculescu, Radu ;
Mihail, Alexandru .
CHAOS SOLITONS & FRACTALS, 2024, 182
[24]   OnWeakly Hyperbolic Iterated Function Systems [J].
Arbieto, Alexander ;
Junqueira, Andre ;
Santiago, Bruno .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01) :111-140
[25]   On the equivalence of homogeneous iterated function systems [J].
Deng, Qi-Rong ;
Lau, Ka-Sing .
NONLINEARITY, 2013, 26 (10) :2767-2775
[26]   A CLASS OF MOBIUS ITERATED FUNCTION SYSTEMS [J].
Cakmak, Gokce ;
Deniz, Ali ;
Kocak, Sahin .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (03) :927-933
[27]   On Weakly Hyperbolic Iterated Function Systems [J].
Alexander Arbieto ;
André Junqueira ;
Bruno Santiago .
Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 :111-140
[28]   Normalization of the collage regions of iterated function systems [J].
Zhang, Zhengbing ;
Zhang, Wei .
OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY II, 2012, 8558
[29]   Thermodynamic Formalism for General Iterated Function Systems with Measures [J].
Brasil, Jader E. ;
Oliveira, Elismar R. ;
Souza, Rafael Rigao .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
[30]   Iterated function systems of logistic maps: synchronization and intermittency [J].
Abbasi, Neda ;
Gharaei, Masoumeh ;
Homburg, Ale Jan .
NONLINEARITY, 2018, 31 (08) :3880-3913