ON COUNTING LATTICE POINTS IN POLYHEDRA

被引:10
|
作者
DYER, M
机构
[1] Univ of Leeds, Leeds
关键词
LATTICE POINTS; POLYNOMIAL TIME; DEDEKIND SUMS; CONVEX POLYHEDRON;
D O I
10.1137/0220044
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Some reductions of the computational problem of counting all the integer lattice points in an arbitrary convex polyhedron in a fixed number of dimensions d are considered. It is shown that only odd d need to be studied. In three dimensions the problem is reduced to the computation of Dedekind sums. Hence it is shown that the counting problem in three or four dimensions is in polynomial time. A corresponding reduction of the five-dimensional problem is also examined, but is not shown to lead to polynomial-time algorithms.
引用
收藏
页码:695 / 707
页数:13
相关论文
共 50 条
  • [31] Optimal stretching for lattice points and eigenvalues
    Laugesen, Richard S.
    Liu, Shiya
    ARKIV FOR MATEMATIK, 2018, 56 (01): : 111 - 145
  • [32] Integer chords and configurations of lattice points
    Huxley, M. N.
    Plunkett, S. M.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (02): : 534 - 545
  • [33] Lattice Points Close to the Heisenberg Spheres
    Campolongo E.G.
    Taylor K.
    La Matematica, 2023, 2 (1): : 156 - 196
  • [34] A note on an inverse problem for lattice points
    Ljujic, Zeljka
    Sanabria, Camilo
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) : 1012 - 1018
  • [35] AVERAGE NUMBER OF LATTICE POINTS IN A DISK
    Jayakar, Sujay
    Strichartz, Robert S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (01) : 1 - 8
  • [36] Lattice points in bodies with algebraic boundary
    Müller, W
    ACTA ARITHMETICA, 2003, 108 (01) : 9 - 24
  • [37] On the Number of Lattice Points in the Shifted Circles
    Jabbarov, Ilgar Sh
    Aslanova, Natiga Sh
    Jeferli, Esmira, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (02): : 175 - 190
  • [38] Lattice points in rotated convex domains
    Guo, Jingwei
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (02) : 411 - 438
  • [39] A NOTE ON LATTICE POINTS AND OPTIMAL STRETCHING
    Guo, Jingwei
    Jiang, Tao
    COLLOQUIUM MATHEMATICUM, 2019, 157 (01) : 65 - 82
  • [40] On the number of lattice points in thin sectors
    Waxman, Ezra
    Yesha, Nadav
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (03): : 641 - 658