SCALAR CURVATURE AND CONFORMAL DEFORMATION OF HYPERBOLIC SPACE

被引:42
作者
RATTO, A
RIGOLI, M
VERON, L
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-20133 MILAN,ITALY
[2] FAC SCI TOURS,DEPT MATH,F-37200 TOURS,FRANCE
关键词
D O I
10.1006/jfan.1994.1044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (H(m), g(H)), m greater-than-or-equal-to 3, be the m-dimensional hyperbolic space with its Riemannian metric g(H), of sectional curvature - 1; and let K be a smooth function on H(m). In the first part of this article we establish sufficient conditions for K to be-respectively, not to be-the scalar curvature of some complete metric u4/(m-2)g(H) pointwise conformal to g(H). In the second part we prove results for the two-dimensional case, singularity and uniquens questions. (C) 1994 Academic Press, Inc.
引用
收藏
页码:15 / 77
页数:63
相关论文
共 45 条
[1]  
ANDERSON PT, 1992, COMMUN MATH PHYS, V149, P587
[2]  
Aubin Thierry, 1982, MONGE AMPERE EQUATIO, V252
[3]   COMPLETE CONFORMAL METRICS WITH NEGATIVE SCALAR CURVATURE IN COMPACT RIEMANNIAN-MANIFOLDS [J].
AVILES, P ;
MCOWEN, RC .
DUKE MATHEMATICAL JOURNAL, 1988, 56 (02) :395-398
[4]  
AVILES P, 1988, J DIFFER GEOM, V27, P225
[5]  
AVILES P, 1985, J DIFFER GEOM, V21, P269
[6]   ELIMINABLE SINGULARITIES FOR SEMILINEAR EQUATIONS [J].
BARAS, P ;
PIERRE, M .
ANNALES DE L INSTITUT FOURIER, 1984, 34 (01) :185-206
[7]   COMPLETE METRICS CONFORMAL TO THE HYPERBOLIC DISK [J].
BLAND, J ;
KALKA, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (01) :128-132
[8]  
BLAND J, 1986, T AM MATH SOC, V316, P433
[9]  
BLISS GA, 1930, J LOND MATH SOC, V5, P40
[10]   SCALAR CURVATURE FUNCTIONS IN A CONFORMAL CLASS OF METRICS AND CONFORMAL TRANSFORMATIONS [J].
BOURGUIGNON, JP ;
EZIN, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :723-736