NONLINEAR PLANE-WAVES IN THE KLEIN-GORDON-MAXWELL FIELD-THEORY

被引:0
作者
JIMENEZ, S
VAZQUEZ, L
机构
[1] CERN,SL,AP,CH-1211 GENEVA 23,SWITZERLAND
[2] LOS ALAMOS NATL LAB,CTR NONLINEAR STUDIES,LOS ALAMOS,NM 87545
[3] UNIV COMPLUTENSE,FAC CIENCIAS FIS,DEPT FIS TEOR,E-28040 MADRID,SPAIN
来源
MATEMATICA APLICADA E COMPUTACIONAL | 1993年 / 12卷 / 01期
关键词
NONLINEAR PLANE-WAVES; KLEIN-GORDON-MAXWELL SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a set of plane-wave solutions of the coupled Klein-Gordon-Maxwell field equations. These solutions are described by nonlinear mechanical systems of finite degrees of freedom. By analyzing these systems, we find an asymptotic blow-up for almost all the solutions.
引用
收藏
页码:7 / 18
页数:12
相关论文
共 9 条
[1]   CONFIGURATION MANIFOLD OF YANG-MILLS CLASSICAL MECHANICS [J].
ASATRYAN, HM ;
SAVVIDY, GK .
PHYSICS LETTERS A, 1983, 99 (6-7) :290-292
[2]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[3]   CHAOTIC PLANE-WAVE SOLUTIONS FOR THE RELATIVISTIC SELF-INTERACTING QUANTUM ELECTRON [J].
DILTS, G .
PHYSICA D, 1986, 23 (1-3) :470-478
[4]  
JIMENEZ S, 1988, APPL MATH COMPUT, V25, P207
[5]  
Matinyan S. G., 1985, Soviet Journal of Particles and Nuclei, V16, P226
[6]  
MATINYAN SG, 1981, ZH EKSP TEOR FIZ, V53, P421
[7]   THE YANG-MILLS CLASSICAL MECHANICS AS A KOLMOGOROV K-SYSTEM [J].
SAVVIDY, GK .
PHYSICS LETTERS B, 1983, 130 (05) :303-307
[8]  
Schweber S.S., 1961, INTRO RELATIVISTIC Q
[9]   NECESSARY CONDITION FOR THE EXISTENCE OF ALGEBRAIC 1ST INTEGRALS .1. KOWALEVSKI EXPONENTS [J].
YOSHIDA, H .
CELESTIAL MECHANICS, 1983, 31 (04) :363-379