BOUNDARY-VALUES AS HAMILTONIAN VARIABLES .1. NEW POISSON BRACKETS

被引:37
作者
SOLOVIEV, VO
机构
[1] Institute for High Energy Physics, Protoino
关键词
D O I
10.1063/1.530280
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ordinary Poisson brackets in field theory do not fulfill the Jacobi identity if boundary values are not reasonably fixed by special boundary conditions. It is shown that these brackets can be modified by adding some surface terms to lift this restriction. The new brackets generalize a canonical bracket considered by Lewis, Marsden, Montgomery, and Ratiu for the free boundary problem in hydrodynamics. The definition of Poisson brackets used herein permits the treating of boundary values of a field on equal footing with its internal values and the direct estimation of the brackets between both surface and volume integrals. This construction is applied to any local form of Poisson brackets.
引用
收藏
页码:5747 / 5769
页数:23
相关论文
共 29 条
[1]   HIGHER EULER OPERATORS AND SOME OF THEIR APPLICATIONS [J].
ALDERSLEY, SJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (03) :522-531
[2]  
Anderson I. M., 1978, AEQUATIONES MATH, V17, P255
[3]  
ANDERSON IM, 1976, THESIS U ARIZONA
[4]  
ANDERSON IM, 1992, CONT MATH, V132
[5]  
ARKADIEV VA, 1988, DOKL AKAD NAUK SSSR+, V298, P324
[6]  
ARKADIEV VA, 1988, TEOR MAT FIZ, V75, P170
[7]  
ARNOLD VI, 1974, MATH METHODS CLASSIC, P186
[8]   CONSISTENCY OF THE CANONICAL REDUCTION OF GENERAL RELATIVITY [J].
ARNOWITT, R ;
DESER, S ;
MISNER, CW .
JOURNAL OF MATHEMATICAL PHYSICS, 1960, 1 (05) :434-439
[9]  
Astashov A. M., 1986, Journal of Geometry and Physics, V3, P263, DOI 10.1016/0393-0440(86)90022-7
[10]  
BOGOLYUBOV NN, 1987, GENERAL PRINCIPLES Q