POINTWISE AND UNIFORM ESTIMATES FOR CONVEX APPROXIMATION OF FUNCTIONS BY ALGEBRAIC POLYNOMIALS

被引:29
作者
KOPOTUN, KA
机构
[1] Department of Mathematics, University of Alberta, Edmonton, T6G 2G1, Alberta
关键词
DEGREE OF CONVEX APPROXIMATION BY POLYNOMIALS; AVERAGED MODULI OF SMOOTHNESS; DITZIAN-TOTIK MODULI OF SMOOTHNESS;
D O I
10.1007/BF01263061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let DELTA(q) be the set of functions f for which the qth difference is non-negative on the interval [-1, 1], P(n) is the set of algebraic polynomials of degree not exceeding n, tau(k)(f, delta)p is the averaged Sendov-Popov modulus of smoothness in the L(p)[-1, 1] metric for 1 less-than-or-equal-to p less-than-or-equal-to infinity, omega(k)(f, delta) and omega(phi)f(f, delta), phi(x): = square-root 1 - x2, are the usual modulus and the Ditzian-Totik modulus of smoothness in the uniform metric, respectively. For a function f is-an-element-of C[-1, 1] and DELTA2 we construct a polynomial p(n) is-an-element-of P(n) and DELTA2 such that \f(x) - p(n)(x)\ less-than-or-equal-to Comega3(f, n-1 square-root 1 - x2 + n-2), x is-an-element-of [-1, 1]; \\f - p(n)\\infinity less-than-or-equal-to Comega(phi)3(f, n-1); \\f - P(n)\\p less-than-or-equal-to Ctau3(f, n-1)p. As a consequence, for a function f is-an-element-of C2[-1, 1] and DELTA3 a polynomial p(n)* is-an-element-of P(n) and DELTA3 exists such that \\f - p(n)*\\infinity less-than-or-equal-to Cn-1omega2(f', n-1), where n greater-than-or-equal-to 2 and C is an absolute constant.
引用
收藏
页码:153 / 178
页数:26
相关论文
共 12 条
[1]   POINTWISE ESTIMATES FOR MONOTONE POLYNOMIAL-APPROXIMATION [J].
DEVORE, RA ;
YU, XM .
CONSTRUCTIVE APPROXIMATION, 1985, 1 (04) :323-331
[2]  
Ditzian Z., 1987, MODULI SMOOTHNESS
[3]  
Dzjadyk V.K., 1977, INTRO THEORY UNIFORM
[4]  
KOPOTUM KA, 1992, MAT ZAMETKI, V51, P35
[5]  
KORNEJCHUK NP, 1991, EXACT CONSTANTS APPR
[6]   POINTWISE ESTIMATES FOR CONVEX POLYNOMIAL-APPROXIMATION [J].
LEVIATAN, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (03) :471-474
[7]  
Roberts A.W., 1973, CONVEX FUNCTIONS
[8]  
Sendov B., 1988, AVERAGED MODULI SMOO
[9]  
SHEVCHUK IA, COMONTONE APPROXIMAT
[10]  
SHEVCHUK IA, 1989, SOV MATH DOKL, V40, P349