RESPONSE FUNCTION OF THE FRACTIONAL QUANTIZED HALL STATE ON A SPHERE .1. FERMION CHERN-SIMONS THEORY

被引:40
作者
SIMON, SH
HALPERIN, BI
机构
[1] Physics Department, Harvard University, Cambridge
来源
PHYSICAL REVIEW B | 1994年 / 50卷 / 03期
关键词
D O I
10.1103/PhysRevB.50.1807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a well-known singular gauge transformation, certain fractional quantized Hall states can be modeled as integer quantized Hall states of transformed fermions interacting with a Chern-Simons field. In previous work we have calculated the electromagnetic response function of these states at arbitrary frequency and wave vector by using the random-phase approximation in combination with a Landau-Fermi-liquid approach. We now adopt these calculations to a spherical geometry in order to facilitate comparison with exact diagonalizations performed on finite-size systems.
引用
收藏
页码:1807 / 1822
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]   HIERARCHICAL-CLASSIFICATION OF FRACTIONAL QUANTUM HALL STATES [J].
DAMBRUMENIL, N ;
MORF, R .
PHYSICAL REVIEW B, 1989, 40 (09) :6108-6119
[3]   JASTROW-SLATER TRIAL WAVE-FUNCTIONS FOR THE FRACTIONAL QUANTUM HALL-EFFECT - RESULTS FOR FEW-PARTICLE SYSTEMS [J].
DEV, G ;
JAIN, JK .
PHYSICAL REVIEW B, 1992, 45 (03) :1223-1230
[5]  
Edmonds, 1974, ANGULAR MOMENTUM QUA
[6]  
Fetter A, 2003, QUANTUM THEORY MANY
[7]   RANDOM-PHASE APPROXIMATION IN THE FRACTIONAL-STATISTICS GAS [J].
FETTER, AL ;
HANNA, CB ;
LAUGHLIN, RB .
PHYSICAL REVIEW B, 1989, 39 (13) :9679-9681
[8]  
Fierz M., 1944, HELV PHYS ACTA, V17, P27
[9]  
FRADKIN E, 1991, FIELD THEORIES CONDE, P324
[10]   CONJECTURE CONCERNING THE FRACTIONAL HALL HIERARCHY [J].
GROS, C ;
MACDONALD, AH .
PHYSICAL REVIEW B, 1990, 42 (15) :9514-9521