CANONICAL-TRANSFORMATIONS TO ACTION AND PHASE-ANGLE VARIABLES AND PHASE OPERATORS

被引:19
作者
LUIS, A
SANCHEZSOTO, LL
机构
[1] Departamento de Optica, Facultad de Ciencias Físicas, Universidad Complutense
来源
PHYSICAL REVIEW A | 1993年 / 48卷 / 01期
关键词
D O I
10.1103/PhysRevA.48.752
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The well-known difficulties of defining a phase operator of an oscillator are considered from the point of view of the canonical transformation to action and phase-angle variables. This transformation turns out to be nonbijective, i.e., it is not a one-to-one onto mapping. In order to make possible the unitarity of its representations in quantum optics we should enlarge the Hilbert space of the problem. In this enlarged space we find a phase operator that, after projection, reproduces previous candidates to represent a well-behaved phase operator in the quantum domain.
引用
收藏
页码:752 / 757
页数:6
相关论文
共 29 条
[1]  
BANDILLA A, 1991, OPT COMMUN, V80, P267, DOI 10.1016/0030-4018(91)90264-E
[2]   PHASE IN QUANTUM OPTICS [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18) :3849-3862
[3]   ON THE HERMITIAN OPTICAL-PHASE OPERATOR [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF MODERN OPTICS, 1989, 36 (01) :7-19
[4]   LIMITING PROCEDURES FOR THE OPTICAL-PHASE OPERATOR [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF MODERN OPTICS, 1992, 39 (10) :2121-2129
[5]   OPERATORS OF THE PHASE - FUNDAMENTALS [J].
BERGOU, J ;
ENGLERT, BG .
ANNALS OF PHYSICS, 1991, 209 (02) :479-505
[6]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+
[8]  
Dirac PAM, 1930, QUANTUM MECHANICS
[9]   PHASE AND NUMBER [J].
GALINDO, A .
LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (06) :495-500
[10]  
GALINDO A, 1985, LETT MATH PHYS, V9, P263