BRAUER-HILBERTIAN FIELDS

被引:16
作者
FEIN, B
SALTMAN, DJ
SCHACHER, M
机构
[1] UNIV TEXAS,DEPT MATH,AUSTIN,TX 78712
[2] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
关键词
BRAUER GROUP; BRAUER-HILBERTIAN; CORESTRICTION; HILBERTIAN;
D O I
10.2307/2154488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic p (p = 0 allowed), and let F(t) be the rational function field in one variable over F . We say F is Brauer-Hilbertian if the following holds. For every alpha in the Brauer group Br(F(t)) of exponent prime to p , there are infinitely many specializations t --> a E F such that the specialization alphaBAR is-an-element-of Br(F) is defined and has exponent equal to that of alpha. We show every global field is Brauer-Hilbertian, and if K is Hilbertian and F is finite separable over K(t) , F is Brauer-Hilbertian.
引用
收藏
页码:915 / 928
页数:14
相关论文
共 14 条
[1]  
Artin E., 1967, CLASS FIELD THEORY
[2]  
Brown KS, 1982, GRADUATE TEXTS MATH, V87
[3]  
DEMEYER F, LECTURE NOTES MATH, V181
[4]  
Draxl P. K., 1983, SKEW FIELDS
[5]  
ELMAR R, 1977, QUEENS PAPERS PURE A, V46
[6]  
FEIN B, 1981, LECTURE NOTES MATH, V844
[7]  
Matsumura Hideyuki, 1980, COMMUTATIVE ALGEBRA, V56
[8]  
Pierce R.S., 1982, GRADUATE TEXTS MATH
[9]   GENERIC GALOIS EXTENSIONS AND PROBLEMS IN FIELD-THEORY [J].
SALTMAN, DJ .
ADVANCES IN MATHEMATICS, 1982, 43 (03) :250-283
[10]  
Schinzel A., 1982, SELECTED TOPICS POLY