NEW CLASSES OF SIMILARITY SOLUTIONS OF THE INHOMOGENEOUS NONLINEAR DIFFUSION-EQUATIONS

被引:31
作者
SAIED, EA
HUSSEIN, MM
机构
[1] Dept. of Math., Benha Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 14期
关键词
D O I
10.1088/0305-4470/27/14/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie similarity method has been used to extend the similarity solutions of the one-dimensional inhomogeneous nonlinear diffusion equations. We determine the Lie point symmetry vector fields and calculate the similarity ansatz. Then we discuss the resulting nonlinear ordinary differential equations. Exact solutions are found, and their relations to some real physical are discussed.
引用
收藏
页码:4867 / 4874
页数:8
相关论文
共 18 条
[1]  
BARENBATT GI, 1979, SIMILARITY SELF SIMI
[2]   NON-LINEAR DIFFUSION PROBLEM ARISING IN PLASMA PHYSICS [J].
BERRYMAN, JG ;
HOLLAND, CJ .
PHYSICAL REVIEW LETTERS, 1978, 40 (26) :1720-1722
[3]  
Bluman G. W., 1974, APPL MATH SCI, V13
[4]  
CHERNIHA RM, 1993, J PHYS A, V26, P1935
[5]  
DRESNER L, 1903, SIMILARITY SOLUTIONS
[6]  
DRESNER L, 1981, 9TH P S ENG PROBL FU, V1, P618
[7]   LARGE TIME SOLUTION OF AN INHOMOGENEOUS NON-LINEAR DIFFUSION EQUATION [J].
GRUNDY, RE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 386 (1791) :347-372
[8]   SIMILARITY SOLUTIONS FOR NONLINEAR DIFFUSION - FURTHER EXACT-SOLUTIONS [J].
HILL, DL ;
HILL, JM .
JOURNAL OF ENGINEERING MATHEMATICS, 1990, 24 (02) :109-124
[10]  
KING JR, 1990, J PHYS A, V22, P3681