A GEOMETRIC VIEW OF PARAMETRIC LINEAR-PROGRAMMING

被引:80
作者
ADLER, I [1 ]
MONTEIRO, RDC [1 ]
机构
[1] UNIV ARIZONA,DEPT SYST & IND ENGN,TUCSON,AZ 85721
关键词
PARAMETRIC LINEAR PROGRAMMING; SENSITIVITY ANALYSIS; POSTOPTIMALITY ANALYSIS; LINEAR PROGRAMMING;
D O I
10.1007/BF01758841
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new definition of optimality intervals for the parametric right-hand side linear programming (parametric RHS LP) Problem phi(lambda) = min{c(T)x\Ax = b + lambda-bBAR, x greater-than-or-equal-to 0}. We then show that an optimality interval consists either of a breakpoint or the open interval between two consecutive breakpoints of the continuous piecewise linear convex function phi(lambda). As a consequence, the optimality intervals form a partition of the closed interval {lambda; \phi(lambda)\ < infinity}. Based on these optimality intervals, we also introduce an algorithm for solving the parametric RHS LP problem which requires an LP solver as a subroutine. If a polynomial-time LP solver is used to implement this subroutine, we obtain a substantial improvement on the complexity of those parametric RHS LP instances which exhibit degeneracy. When the number of breakpoints of phi(lambda) is polynomial in terms of the size of the parametric problem, we show that the latter can be solved in polynomial time.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 10 条
[1]  
[Anonymous], 2003, LINEAR PROGRAMMING
[2]  
Dikin I. I., 1967, SOVIET MATH DOKLADY, V8, P674
[3]  
FREUND RM, 1985, WP167485 SLOAN TECHN
[4]  
Gal T., 1979, POSTOPTIMAL ANAL PAR
[5]  
Gass S., 1955, NAV RES LOGIST Q, V2, P39, DOI DOI 10.1002/NAV.3800020106
[6]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[7]  
Khachian L. G., 1979, SOV MATH DOKL, V20, P191
[8]  
Murty K. G., 1983, LINEAR PROGRAMMING
[9]   COMPUTATIONAL-COMPLEXITY OF PARAMETRIC LINEAR-PROGRAMMING [J].
MURTY, KG .
MATHEMATICAL PROGRAMMING, 1980, 19 (02) :213-219
[10]  
Schrijver A., 1986, THEORY LINEAR INTEGE