(1 - 2u(2))-Constacyclic Codes over F-p

被引:0
作者
Mostafanasab, Hojjat [1 ]
Karimi, Negin [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math & Applicat, Ardebil, Iran
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2016年 / 9卷 / 01期
关键词
Finite fields; Cyclic codes; Constacyclic codes;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-p be a finite field, where p is an odd prime, and let u be an indeterminate. This article studies (1 - 2u(2))-constacyclic codes over the ring F-p + uF(p) + u(2)F(p), where u(3) = u. We describe generator polynomials of this kind of codes and investigate the structural properties of these codes by a decomposition theorem.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 15 条
[1]   On (1-u)-cyclic codes over Fpk + uFpk [J].
Amarra, Maria Carmen V. ;
Nemenzo, Fidel R. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (11) :1129-1133
[2]  
Aydin N, 2013, APPL ALGEBR ENG COMM, V24, P355, DOI 10.1007/s00200-013-0207-y
[3]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[4]   Constacyclic codes of length ps over Fpm + uFpm [J].
Dinh, Hai Q. .
JOURNAL OF ALGEBRA, 2010, 324 (05) :940-950
[5]   Constacyclic Codes of Length 2s Over Galois Extension Rings of F2 + uF2 [J].
Dinh, Hai Q. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (04) :1730-1740
[6]   Negacyclic codes of length 2s over Galois rings [J].
Dinh, HQ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4252-4262
[7]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[8]  
Gao J, 2015, J APPL MATHE COMPUT, V47, P473, DOI 10.1007/s12190-014-0786-1
[9]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[10]   SKEW CONSTACYCLIC CODES OVER FINITE CHAIN RINGS [J].
Jitman, Somphong ;
Ling, San ;
Udomkavanich, Patanee .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (01) :39-63