Mathematical modeling single-phase fluid flows in porous media

被引:1
作者
Markov, Sergey Igorevich [1 ,2 ]
Itkina, Natalya Borisovna [1 ]
机构
[1] Novosibirsk State Tech Univ, Prospekt K Marksa 20, Novosibirsk 630073, Russia
[2] RAS, Trofimuk Inst Petr Geol & Geophys SB, Koptug Ave 3, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2018年 / 15卷
关键词
seepage problem; Discontinuous Galerkin Method; permeability tensor; homogenization;
D O I
10.17377/semi.2018.15.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we propose a modern mathematical method for solving seepage problems in multiscale porous media. We present a discrete variational formulation for a Discontinuous Galerkin Method (DG-method) with special stabilizing parameters. The DG-method is used for solving the single-phase fluid flow problem with full permeability tensor of the second rank in the macrolevel medium. A problem of homogenizing the heterogeneous mesolevel medium with non-periodic inclusions is considered. An algorithm for solving an inverse data problem is based on the Fletcher-Reeves method and the local Newton method. Mathematical modeling results of solving the seepage problem in the anisotropic heterogeneous and efficient media are given. A comparative analysis of the obtained mathematical modeling results is carried out. Keywords: seepage problem, Discontinuous Galerkin Method, permeability tensor, homogenization.
引用
收藏
页码:115 / 134
页数:20
相关论文
共 20 条
[1]  
Abbo Khalil K., 2011, IRAQI J STAT SCI, P21
[2]   Homogenization of composite electrets [J].
Amirat, Youcef ;
Shelukhin, Vladimir V. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2017, 28 (02) :261-283
[3]   Nonhomogeneous Incompressible Herschel-Bulkley Fluid Flows Between Two Eccentric Cylinders [J].
Amirat, Youcef ;
Shelukhin, Vladimir V. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (04) :635-661
[4]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[5]   Scale Dependence of Effective Hydraulic Conductivity Distributions in 3D Heterogeneous Media: A Numerical Study [J].
Boschan, A. ;
Noetinger, B. .
TRANSPORT IN POROUS MEDIA, 2012, 94 (01) :101-121
[6]  
Cocburn B., 2005, HIGH ORDER METHOD, V9, p69
[7]   Prediction of effective diffusivity tensors for bulk diffusion with chemical reactions in porous media [J].
da Silva, E. A. Borges ;
Souza, D. P. ;
de Souza, A. A. Ulson ;
de Souza, S. M. A. Guelli U. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 24 (01) :47-60
[8]   Inverse bounds of two-component composites [J].
Engstroem, Christian .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 68 (03) :666-679
[9]  
[Иткина Наталья Борисовна Itkina Natalya Borisovna], 2016, [Вычислительные технологии, Vychislitel'nye tekhnologii], V21, P49
[10]   New Renormalization Schemes for Conductivity Upscaling in Heterogeneous Media [J].
Karim, M. R. ;
Krabbenhoft, K. .
TRANSPORT IN POROUS MEDIA, 2010, 85 (03) :677-690