EXISTENCE OF TSCHEBYSCHEV CENTERS, BEST N-NETS AND BEST COMPACT APPROXIMANTS

被引:22
作者
AMIR, D [1 ]
MACH, J [1 ]
SAATKAMP, K [1 ]
机构
[1] UNIV BONN, SCH ANGEW MATH, D-5300 BONN 1, FED REP GER
关键词
D O I
10.2307/1998896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:513 / 524
页数:12
相关论文
共 30 条
[1]  
ALFSEN EM, 1972, ANN MATH, V96, P98, DOI 10.2307/1970895
[2]  
AMIR D, 1978, PAC J MATH, V77, P1
[3]   RELATIVE TSCHEBYSCHEV CENTERS IN NORMED LINEAR-SPACES .1. [J].
AMIR, D ;
ZIEGLER, Z .
JOURNAL OF APPROXIMATION THEORY, 1980, 29 (03) :235-252
[4]   CENTERS OF INFINITE BOUNDED SETS IN A NORMED SPACE [J].
CALDER, JR ;
COLEMAN, WP ;
HARRIS, RL .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (05) :986-999
[5]  
DEUTSCH F, UNPUB J APPROX THEOR
[6]   APPROXIMATION OF LIMITS OF BANACH-SPACE BY COMPACT OPERATOR AND APPLICATION TO APPROXIMATION OF LIMITED OPERATORS [J].
FAKHOURY, H .
JOURNAL OF APPROXIMATION THEORY, 1979, 26 (01) :79-100
[8]  
Garkavi A.L., 1962, AM MATH SOC TRANSL 2, V26, P87
[9]   CONDITIONAL TSCHEBYSCHEFF CENTER OF A BOUNDED SET OF CONTINUOUS-FUNCTIONS [J].
GARKAVI, AL ;
ZAMYATIN, VN .
MATHEMATICAL NOTES, 1975, 18 (1-2) :622-627
[10]  
GARKAVI AL, 1973, MATH NOTES, V14, P827