COLLABORATION OF G(1) CYCLINS IN THE FUNCTIONAL INACTIVATION OF THE RETINOBLASTOMA PROTEIN

被引:227
作者
HATAKEYAMA, M [1 ]
BRILL, JA [1 ]
FINK, GR [1 ]
WEINBERG, RA [1 ]
机构
[1] MIT, DEPT BIOL, CAMBRIDGE, MA 02142 USA
关键词
CELL-CYCLE; G(1) CYCLINS; CYCLIN-DEPENDENT KINASES; SACCHAROMYCES CEREVISIAE; RETINOBLASTOMA PROTEIN; PHOSPHORYLATION;
D O I
10.1101/gad.8.15.1759
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The retinoblastoma gene product (pRB) constrains cell proliferation by preventing cell-cycle progression from the G(1) to S phase. Its growth-inhibitory effects appear to be reversed by hyperphosphorylation occurring during G(1). This process is thought to involve G(1) cyclins and cyclin-dependent kinases (cdks). Here we report that the cell cycle-dependent phosphorylation of mammalian pRB is faithfully reproduced when it is expressed in Saccharomyces cerevisiae. As is the case in mammalian tells, this phosphorylation requires an intact oncoprotein-binding domain and is inhibited by a negative growth factor, in this case a mating pheromone. Expression of pRB in cln (-) mutants indicates that specific combinations of endogenous G(1) cyclins, Cln3 and either Cln1 or Cln2 are required for pRB hyperphosphorylation in yeast. Moreover, expression of mammalian G(1) cyclins in cln (-) yeast cells indicates that the functions of Cln2 and Cln3 in pRB hyperphosphorylation can be complemented by human cyclin E and cyclin D1, respectively. These observations suggest a functional heterogeneity among G(1) cyclin-cdk complexes and indicate a need for the involvement of multiple G(1) cyclins in promoting pRB hyperphosphorylation and resulting cell-cycle progression.
引用
收藏
页码:1759 / 1771
页数:13
相关论文
共 74 条
[1]   ADENOVIRUS-E1A PREVENTS THE RETINOBLASTOMA GENE-PRODUCT FROM COMPLEXING WITH A CELLULAR TRANSCRIPTION FACTOR [J].
BANDARA, LR ;
LATHANGUE, NB .
NATURE, 1991, 351 (6326) :494-497
[2]   THE RETINOBLASTOMA PROTEIN IS PHOSPHORYLATED DURING SPECIFIC PHASES OF THE CELL-CYCLE [J].
BUCHKOVICH, K ;
DUFFY, LA ;
HARLOW, E .
CELL, 1989, 58 (06) :1097-1105
[3]   THE E2F TRANSCRIPTION FACTOR IS A CELLULAR TARGET FOR THE RB PROTEIN [J].
CHELLAPPAN, SP ;
HIEBERT, S ;
MUDRYJ, M ;
HOROWITZ, JM ;
NEVINS, JR .
CELL, 1991, 65 (06) :1053-1061
[4]   PHOSPHORYLATION OF THE RETINOBLASTOMA GENE-PRODUCT IS MODULATED DURING THE CELL-CYCLE AND CELLULAR-DIFFERENTIATION [J].
CHEN, PL ;
SCULLY, P ;
SHEW, JY ;
WANG, JYJ ;
LEE, WH .
CELL, 1989, 58 (06) :1193-1198
[5]   THE T/E1A-BINDING DOMAIN OF THE RETINOBLASTOMA PRODUCT CAN INTERACT SELECTIVELY WITH A SEQUENCE-SPECIFIC DNA-BINDING PROTEIN [J].
CHITTENDEN, T ;
LIVINGSTON, DM ;
KAELIN, WG .
CELL, 1991, 65 (06) :1073-1082
[6]   A POTENTIAL POSITIVE FEEDBACK LOOP CONTROLLING CLN1 AND CLN2 GENE-EXPRESSION AT THE START OF THE YEAST-CELL CYCLE [J].
CROSS, FR ;
TINKELENBERG, AH .
CELL, 1991, 65 (05) :875-883
[8]   SV40 LARGE TUMOR-ANTIGEN FORMS A SPECIFIC COMPLEX WITH THE PRODUCT OF THE RETINOBLASTOMA SUSCEPTIBILITY GENE [J].
DECAPRIO, JA ;
LUDLOW, JW ;
FIGGE, J ;
SHEW, JY ;
HUANG, CM ;
LEE, WH ;
MARSILIO, E ;
PAUCHA, E ;
LIVINGSTON, DM .
CELL, 1988, 54 (02) :275-283
[9]   THE PRODUCT OF THE RETINOBLASTOMA SUSCEPTIBILITY GENE HAS PROPERTIES OF A CELL-CYCLE REGULATORY ELEMENT [J].
DECAPRIO, JA ;
LUDLOW, JW ;
LYNCH, D ;
FURUKAWA, Y ;
GRIFFIN, J ;
PIWNICAWORMS, H ;
HUANG, CM ;
LIVINGSTON, DM .
CELL, 1989, 58 (06) :1085-1095
[10]   THE RETINOBLASTOMA-SUSCEPTIBILITY GENE-PRODUCT BECOMES PHOSPHORYLATED IN MULTIPLE STAGES DURING CELL-CYCLE ENTRY AND PROGRESSION [J].
DECAPRIO, JA ;
FURUKAWA, Y ;
AJCHENBAUM, F ;
GRIFFIN, JD ;
LIVINGSTON, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (05) :1795-1798