ADAPTIVE ROBOT CONTROL USING NEURAL NETWORKS

被引:12
作者
SAAD, M
BIGRAS, P
DESSAINT, LA
ALHADDAD, K
机构
[1] Groupe de recherche en électronique de puissance, et commande industrielle, Ecole de Technologie Supérieure, R Montréal, Québec
关键词
D O I
10.1109/41.293877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the trajectory tracking problem to control the nonlinear dynamic model of a robot using neural networks. These controllers are based on learning from input-output measurements and not on parametric-model-based dynamics, Multilayer recurrent networks are used to estimate the dynamics of the system and the inverse dynamic model. The training is achieved using the backpropagation method. The minimization of the quadratic error is computed by a variable step gradient method. Another multilayer recurrent neural network is added to estimate the joint accelerations. The control process is applied to a two degree-of-freedom (DOF) SCARA robot using a DSP-based controller. Experimental results show the effectiveness of this approach. The tracking trajectory errors are very small and torques expected at manipulator joints are free of chattering.
引用
收藏
页码:173 / 181
页数:9
相关论文
共 18 条
[1]  
Craig J.J., Hsu P., Sasiry S.S., Adaptive control of mechanical manipulators, Proc. IEEE Int Conf. Robotics and Aut., pp. 190-195, (1986)
[2]  
Saad M., Dessaint L.A., Basset J.F., Dube Y., Adaptive robot controllers: A comparative study, Symp. Design Methods of Cont. Syst, pp. 453-458, (1991)
[3]  
Dessaint L.A., Saad M., Hebert B., Al-Haddad K., An adaptive controller for a direct-drive SCARA robot, IEEE Trans. lnd. Elec., 39, pp. 105-111, (1992)
[4]  
Slotine J.J.E., Li W., Adaptive manipulator control: A case study, IEEEIEEE Trans. Automat. Cont., 33, 11, pp. 995-1003, (1988)
[5]  
Asare H.R., Wilson D.G., Design of computed torque model reference adaptive control for space-hased robotic manipulator, ASME, WAM, pp. 195-204, (1986)
[6]  
Hsu P., Bodson M., Sastry M., Paden B., Adaptive identification and control for manipulators without using joint accelerations, IEEE Int. Conf. Robotics and Automat., pp. 1210-1215, (1987)
[7]  
Li W., Slotinc J.J.F., Indirect adaptive robot control, Proc. IEEE Int. Conf on Robotics and Automation, pp. 704-709, (1988)
[8]  
Hertz J., Krogh A., Palmer R.G., Introduction to the Theory of Neural Computation, (1991)
[9]  
Narendra K.S., Parthasarathy K., Gradient methods for the optimization of dynamical systems containing neural networks, IEEE Trans. Neural Networks, 2, (1991)
[10]  
Narendra K.S., Parthasarathy K., Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks, 1, (1990)