THE MAXIMUM DETERMINANT OF AN N X N LOWER HESSENBERG (0, 1) MATRIX

被引:8
作者
CHING, L
机构
[1] Department of Mathematics Leizhou Teacher College Zhanjiang City, Guangdong Province
关键词
D O I
10.1016/0024-3795(93)90429-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A = (a(ij)) be an n X n (0, 1) matrix which is lower Hessenberg, i.e., a(ij) = 0 for j > i + 1. There are 2n-1 (possibly nonzero) terms in the determinant of an n X n lower Hessenberg (0, 1) matrix so this is a trivial upper bound for the determinant. We define an n X n (0, 1) matrix D(n) and show that this upper bound is det D(n) = 1/square-root 5[(1 + square-root 5/2)n - (1 - square-root 5/3)n] Here det D(n) is the nth Fibonacci number, i.e., det D(n) = det D(n-1) + det D(n-2) and det D1 = det D2 = 1 One has det D(n) --> infinity as n --> infinity. This answers positively a question due to W. W. Barrett.
引用
收藏
页码:147 / 153
页数:7
相关论文
共 3 条
[1]   ON THE SPECTRAL-RADIUS OF A (0,1) MATRIX RELATED TO MERTENS FUNCTION [J].
BARRETT, WW ;
FORCADE, RW ;
POLLINGTON, AD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 :151-159
[2]  
BARRETT WW, 1988, LINEAR ALGEBRA APPL, V107, P315
[3]   ON THE MINIMUM SPECTRAL-RADIUS OF MATRICES OF ZEROS AND ONES [J].
BRUALDI, RA ;
SOLHEID, ES .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 85 :81-100