EXTENDING THE SMOOTHING SPLINE ESTIMATE

被引:0
|
作者
SPAGOLLA, A [1 ]
CAPRILE, B [1 ]
机构
[1] IRST,I-38050 TRENT,ITALY
关键词
D O I
10.1016/0895-7177(94)90022-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An extension of the one-parameter class of functionals considered in the Smoothing Spline Estimate framework is proposed to better deal with scaling problems or anisotropies of data to be approximated. In particular, a matrix, L, of regularizing parameters is introduced in place of the typical parameter lambda. By means of an appropriate coordinates transformation, the resulting variational problem can be rephrased in terms of the ''traditional'' Smoothing Spline Estimate method, and the Generalized Cross Validation technique can consequently be applied to find optimal values for L. Following this approach, numerical experiments have been performed on synthetic 2D data, and the results compared with those obtained with Smoothing Spline Estimate and Hyper Basis Function methods.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [1] Bayesian approach to smoothing parameter selection in spline estimate for regression curve
    Amroun, Sonia
    Djerroud, Lamia
    Adjabi, Smail
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2020, 12 (03) : 216 - 227
  • [2] THE AVERAGE POSTERIOR VARIANCE OF A SMOOTHING SPLINE AND A CONSISTENT ESTIMATE OF THE AVERAGE SQUARED ERROR
    NYCHKA, D
    ANNALS OF STATISTICS, 1990, 18 (01): : 415 - 428
  • [3] Spline smoothing on surfaces
    Duchamp, T
    Stuetzle, W
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (02) : 354 - 381
  • [4] A SIMPLE SMOOTHING SPLINE
    EUBANK, RL
    AMERICAN STATISTICIAN, 1994, 48 (02): : 103 - 106
  • [5] COMPLETE SPLINE SMOOTHING
    HU, CL
    SCHUMAKER, LL
    NUMERISCHE MATHEMATIK, 1986, 49 (01) : 1 - 10
  • [6] Constrained spline smoothing
    Kopotun, K.
    Leviatan, D.
    Prymak, A. V.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 1985 - 1997
  • [7] Smoothing spline ANOPOW
    Stoffer, David S.
    Han, Sangdae
    Qin, Li
    Guo, Wensheng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3789 - 3796
  • [8] Smoothing an arc spline
    Li, Z
    Meek, DS
    COMPUTERS & GRAPHICS-UK, 2005, 29 (04): : 576 - 587
  • [9] SMOOTHING BY SPLINE FUNCTIONS
    REINSCH, CH
    NUMERISCHE MATHEMATIK, 1967, 10 (03) : 177 - &
  • [10] Smoothing spline: local adaptive smoothing parameter
    Boucheta, R.
    Djeddi, M.
    Advances in Modelling and Analysis A, 1994, 20 (2-4): : 55 - 64