MAGNUS APPROXIMATION IN THE ADIABATIC PICTURE

被引:14
作者
KLARSFELD, S
OTEO, JA
机构
[1] UNIV VALENCIA, INST FIS CORPUSCULAR, E-46100 BURJASCOT, SPAIN
[2] UNIV VALENCIA, DEPT FIS TEOR, E-46100 BURJASSOT, SPAIN
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 05期
关键词
D O I
10.1103/PhysRevA.45.3329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a simple approximate nonperturbative method for treating time-dependent problems that works well in the intermediate regime far from both the sudden and the adiabatic limits. The method consists of applying the Magnus expansion after transforming to the adiabatic basis defined by the eigenstates of the instantaneous Hamiltonian.
引用
收藏
页码:3329 / 3332
页数:4
相关论文
共 25 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   WKB CALCULATION OF QUANTUM ADIABATIC PHASES AND NONADIABATIC CORRECTIONS [J].
BENDER, CM ;
PAPANICOLAOU, N .
JOURNAL DE PHYSIQUE, 1988, 49 (04) :561-566
[3]  
Berry M. V., 1989, GEOMETRIC PHASES PHY
[5]   GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :405-411
[6]   QUANTUM PHASE CORRECTIONS FROM ADIABATIC ITERATION [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 414 (1846) :31-46
[7]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[8]   NONADIABATIC TRANSITIONS INDUCED BY A TIME-DEPENDENT HAMILTONIAN IN SEMICLASSICAL ADIABATIC LIMIT - 2-STATE CASE [J].
DAVIS, JP ;
PECHUKAS, P .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (08) :3129-3138
[9]  
DYKHNE AM, 1962, ZH EKSP TEOR FIZ, V14, P941
[10]   GENERALIZED ADIABATIC INVARIANCE [J].
GARRIDO, LM .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (03) :355-&