A Matlab Program to Calculate Distribution with Maximum Renyi Entropy

被引:0
|
作者
Tabass, Sanei M. [1 ]
Borzadaran, Mohtashami G. R. [2 ]
Amini, M. [2 ]
Mohtashami, Y. [3 ]
机构
[1] Univ Sistan & Baluchestan, Dept Stat, Zahedan, Iran
[2] Ferdowsi Univ Mashhad, Dept Stat, Mashhad, Iran
[3] Ferdowsi Univ Mashhad, Dept Mech, Mashhad, Iran
来源
THAILAND STATISTICIAN | 2016年 / 14卷 / 02期
关键词
Shannon entropy; Renyi entropy; maximum entropy principle; maximum Renyi entropy; lagrange method; moment condition;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Maximizing the Shannon entropy and Renyi entropy in a class of distributions subject to a set of constraints are the topics that play an important role in statistical inference. In this paper some distributions with maximum Renyi entropy under given constraints are presented. In this regard, we wrote a program in Matlab, that find out distributions with maximum Renyi entropy. In this program we have used the method of Lagrange. Using this program we have determined Lagrange multipliers and then obtained distributions with maximum Renyi entropy under a given constraint. In any case the results are summariezed in related table.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
  • [1] Maximum Renyi Entropy Rate
    Bunte, Christoph
    Lapidoth, Amos
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) : 1193 - 1205
  • [2] On maximum entropy principle, superstatistics, power-law distribution and Renyi parameter
    Bashkirov, AG
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) : 153 - 162
  • [3] A geometric characterization of maximum Renyi entropy distributions
    Vignat, Christophe
    Hero, Alfred O.
    Costa, Jose A.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 1822 - +
  • [4] Some results concerning maximum Renyi entropy distributions
    Johnson, Oliver
    Vignat, Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (03): : 339 - 351
  • [5] Renyi's entropy for residual lifetime distribution
    Abraham, B
    Sankaran, PG
    STATISTICAL PAPERS, 2006, 47 (01) : 17 - 29
  • [6] Renyi entropy, abundance distribution, and the equivalence of ensembles
    Mora, Thierry
    Walczak, Aleksandra M.
    PHYSICAL REVIEW E, 2016, 93 (05):
  • [7] Empirical Lipschitz Constants for the Renyi Entropy Maximum Likelihood Estimator
    Konstantinides, John M.
    Andreadis, Ioannis
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) : 3540 - 3554
  • [8] Renyi's entropy for residual lifetime distribution
    B. Abraham
    P. G. Sankaran
    Statistical Papers, 2006, 47 : 17 - 29
  • [9] The absolute minimum and maximum value problem and the Renyi entropy of order α
    Alencar, MS
    Assis, FM
    ITS '98 PROCEEDINGS - SBT/IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 1998, : 239 - 241
  • [10] Bayesian Estimations of Shannon Entropy and Renyi Entropy of Inverse Weibull Distribution
    Ren, Haiping
    Hu, Xue
    MATHEMATICS, 2023, 11 (11)