Higher-order tableaux

被引:0
作者
Kohlhase, M
机构
来源
THEOREM PROVING WITH ANALYTIC TABLEAUX AND RELATED METHODS | 1995年 / 918卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Even though higher-order calculi for automated theorem proving are rather old, tableau calculi have not been investigated yet. This paper presents two free variable tableau calculi for higher-order logic that use higher-order unification as the key inference procedure. These calculi differ in the treatment of the substitutional properties of equivalences. The first calculus is equivalent in deductive power to the machine-oriented higher-order refutation calculi known from the literature, whereas the second is complete with respect to Henkin's general models.
引用
收藏
页码:294 / 309
页数:16
相关论文
共 22 条
[1]  
Andrews P. B., 1989, Journal of Automated Reasoning, V5, P257, DOI 10.1007/BF00248320
[2]   RESOLUTION IN TYPE THEORY [J].
ANDREWS, PB .
JOURNAL OF SYMBOLIC LOGIC, 1971, 36 (03) :414-&
[3]  
ANDREWS PB, 1973, COMMUNICATION 0122
[4]  
[Anonymous], 1976, THESIS U PARIS 7
[5]  
BARENDREGT HP, 1980, LAMBDA CALCULUS
[6]  
BETH EW, 1955, MEDEDELINGEN KONINKL, V18, P309
[7]  
FITTING M, 1990, 1ST ORDER LOGIC AUTO
[8]  
Godel Kurt, 1931, MONATSCHEFTE MATH PH, V38, P173, DOI DOI 10.1007/BF01700692
[9]  
Henkin Leon, 1950, J SYMBOLIC LOGIC, V15, P81
[10]  
HINDLEY JR, 1986, INTRO COMBINATORS LA