A SOLUTION FOR THE PROBLEM OF STOKES-FLOW PAST A POROUS SPHERE

被引:10
作者
PADMAVATHI, BS [1 ]
AMARANATH, T [1 ]
机构
[1] UNIV HYDERABAD,CIS,HYDERABAD 500134,ANDHRA PRADESH,INDIA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1993年 / 44卷 / 01期
关键词
D O I
10.1007/BF00914360
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of a general non-axisymmetric Stokes flow of a viscous fluid past a porous sphere is considered. The expressions for the velocity and pressure, both inside and outside the sphere are given, when the flow outside satisfies the Stokes equations and the flow inside the sphere is governed by Darcy's law. The expressions for drag and torque are given. It is found that the drag is greater or smaller than the drag in the rigid case, depending on whether the undisturbed velocity is a pure biharmonic or a harmonic respectively. The torque is same as in the rigid case.
引用
收藏
页码:178 / 184
页数:7
相关论文
共 8 条
[1]  
Almansi E., 1899, ANN MAT PUR APPL, V2, P1, DOI DOI 10.1007/BF02419286
[2]  
FAXEN H, 1924, ARK MAT ASTRO PHYS, V18, P3
[3]  
Josef D., 1964, J APPL MATH MECH, V44, P361, DOI [DOI 10.1002/ZAMM.19640440804, 10.1002/zamm.19640440804]
[4]  
LEONOV AI, 1962, PRIKL MAT MEKH, V26, P564
[5]  
PADMAVATHI BS, IN PRESS ZAMM
[6]   A THEOREM FOR A SHEAR-FREE SPHERE IN STOKES-FLOW [J].
PALANIAPPAN, D ;
NIGAM, SD ;
AMARANATH, T ;
USHA, R .
MECHANICS RESEARCH COMMUNICATIONS, 1990, 17 (06) :429-435
[7]  
PALANIAPPAN D, 1992, Q J MECH APPL MATH, V45, P1
[8]  
WOLFERSDORF LV, 1989, Z ANGEW MATH MECH, V69, P111