CONVERGENCE OF FOURIER-SERIES ALMOST EVERYWHERE AND IN THE L-METRIC

被引:5
作者
HELADZE, SV
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1979年 / 35卷 / 04期
关键词
D O I
10.1070/SM1979v035n04ABEH001570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following theorems are proved.Theorem 1.There exists a constant such that for any function there is a measurable function for which, and is a partial sum of the conjugate Fourier series, and is the conjugate function to and there exists a measurable function such that, is Lebesgue measure), and both the Fourier series of and its conjugate series converge almost everywhere and in the metric of. Bibliography: 11 titles. © 1979 IOP Publishing Ltd.
引用
收藏
页码:527 / 539
页数:13
相关论文
共 10 条
  • [1] Bari N. K., 1961, TRIGONOMETRIC SERIES
  • [2] CERETELI OD, 1972, GAMOQENEB MATH I SEM, P33
  • [3] CERETELI OD, 1968, MAT ZAMETKI, V4, P461
  • [4] CERETELI OD, 1970, SOOBSHCH AKAD NAUK G, V57, P21
  • [5] Hunt RA, 1968, PROC C, P235
  • [6] Kolmogoroff A.H, 1925, FUND MATH, V7, P23, DOI [10.4064/fm-7-1-24-29, DOI 10.4064/FM-7-1-24-29]
  • [7] Luzin N. N., 1951, INTEGRAL TRIGONOMETR
  • [8] Natanson I. P., 1961, THEORY FUNCTIONS REA, VII
  • [9] Natanson I.P., 1955, THEORY FUNCTIONS REA, V1
  • [10] Zygmund A, 1959, TRIGONOMETRIC SERIES, VI