BICUBIC SPLINE INTERPOLATION - QUANTITATIVE TEST OF ACCURACY AND EFFICIENCY

被引:5
作者
RASMUSSEN, KL
SHARMA, PV
机构
[1] Institute of Geophysics, University of Copenhagen, Copenhagen, 2200
关键词
D O I
10.1111/j.1365-2478.1979.tb00976.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Two different methods for the construction of an approximation to bicubic splines for interpolating irregularly spaced two‐dimensional data are described. These are referred to as the least squares line (LSL) and linear segment (LINSEG) construction procedures. A quantitative test is devised for investigating the absolute accuracy and efficiency of the two spline interpolation procedures. The test involves (i) laying of artificial flight lines on the analytically known field of a model, (ii) interpolation of field values along the flight lines and their subtraction from the original field values to compute the residuals. This test is applied on fields due to four models (three prism models and one dyke model) placed at different depths below the flight lines, and for each case the error estimates (the mean error, the maximum error and the standard deviation) are tabulated. An analysis of the error estimates shows in all cases the LSL interpolation to be more accurate than the LINSEG, although the latter is about 50% faster in computer time. The relative accuracy and efficiency of the LSL interpolation is also tested against a recent method based on harmonization procedure, which shows the latter to be more precise, though much slower in speed. Copyright © 1979, Wiley Blackwell. All rights reserved
引用
收藏
页码:394 / 408
页数:15
相关论文
共 8 条