UNIFORM EXPONENTIAL ENERGY DECAY OF WAVE-EQUATIONS IN A BOUNDED REGION WITH L2(0, INFINITY, L2(GAMMA))-FEEDBACK CONTROL IN THE DIRICHLET BOUNDARY-CONDITIONS

被引:106
作者
LASIECKA, I
TRIGGIANI, R
机构
关键词
D O I
10.1016/0022-0396(87)90025-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:340 / 390
页数:51
相关论文
共 29 条
[1]  
BALAKRISHNAN AV, 1981, APPLIED FUNCTIONAL A
[2]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[4]  
CHEN G, 1979, J MATH PURE APPL, V58, P249
[5]  
Datko R., 1970, Journal of Mathematical Analysis and Applications, V32, P610, DOI 10.1016/0022-247X(70)90283-0
[6]   CONCRETE CHARACTERIZATION OF DOMAINS OF FRACTIONAL POWERS OF SOME ELLIPTIC DIFFERENTIAL OPERATORS OF 2ND ORDER [J].
FUJIWARA, D .
PROCEEDINGS OF THE JAPAN ACADEMY, 1967, 43 (02) :82-&
[7]  
KATO T, 1976, PERTURBATIONS THEORY
[8]  
KELLOG B, 1972, MATH FDN FINITE ELEM, pCH3
[9]   DECAY OF SOLUTIONS OF WAVE-EQUATIONS IN A BOUNDED REGION WITH BOUNDARY DISSIPATION [J].
LAGNESE, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (02) :163-182
[10]  
LAGNESE J, 1978, SIAM J CONTROL OPTIM, V16