EXTENSIONS OF THE QUEUING RELATIONS L = LAMBDA-W AND H = LAMBDA-G

被引:19
作者
GLYNN, PW
WHITT, W
机构
[1] UNIV WISCONSIN,DEPT PSICOL,MADISON,WI 53706
[2] AT&T BELL LABS,MATH SCI RES CTR,MURRAY HILL,NJ 07974
关键词
D O I
10.1287/opre.37.4.634
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:634 / 644
页数:11
相关论文
共 13 条
[1]   GENERALIZATION OF L=LAMBDA-W TO MOMENTS OF QUEUE LENGTH AND WAITING TIMES [J].
BRUMELLE, SL .
OPERATIONS RESEARCH, 1972, 20 (06) :1127-1136
[2]   RELATION BETWEEN CUSTOMER AND TIME AVERAGES IN QUEUES [J].
BRUMELLE, SL .
JOURNAL OF APPLIED PROBABILITY, 1971, 8 (03) :508-&
[3]  
Glynn P. W., 1986, Queueing Systems Theory and Applications, V1, P191, DOI 10.1007/BF01536188
[4]   INDIRECT ESTIMATION VIA L = LAMBDA W [J].
GLYNN, PW ;
WHITT, W .
OPERATIONS RESEARCH, 1989, 37 (01) :82-103
[5]   THE RELATION BETWEEN CUSTOMER AND TIME AVERAGES IN QUEUES [J].
HEYMAN, DP ;
STIDHAM, S .
OPERATIONS RESEARCH, 1980, 28 (04) :983-994
[6]   A PROOF FOR THE QUEUING FORMULA - L=LAMBDA-W [J].
LITTLE, JDC .
OPERATIONS RESEARCH, 1961, 9 (03) :383-387
[7]   ON GENERALITY OF EQUATION L = LAMBDAW [J].
MAXWELL, WL .
OPERATIONS RESEARCH, 1970, 18 (01) :172-&
[8]   CONTINUOUS VERSIONS OF THE QUEUING FORMULAS L= LAMBDA-W AND H= LAMBDA-G [J].
ROLSKI, T ;
STIDHAM, S .
OPERATIONS RESEARCH LETTERS, 1983, 2 (05) :211-215
[9]   LAST WORD ON L = LAMBDAW [J].
STIDHAM, S .
OPERATIONS RESEARCH, 1974, 22 (02) :417-421
[10]  
STIDHAM S, 1982, APPLIED PROBABILITY