Finite cyclicity of loops and cusps

被引:38
作者
Roussarie, Robert [1 ]
机构
[1] Univ Bourgogne, Lab Topol, CNRS, UA 755, F-21004 Dijon, France
关键词
D O I
10.1088/0951-7715/2/1/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hilbert 16th problem for polynomial planar vector fields is a consequence of the following conjecture: any analytic deformation of the planar vector field germ along a limit periodic set has a finite cyclicity (a finite bound for the number of limit cycles near the limit periodic set). In this paper the property of finite cyclicity is established for the simplest singular limit sets: loops made by homoclinic connection at a hyperbolic saddle point and cuspidal singular points.
引用
收藏
页码:73 / 117
页数:45
相关论文
共 16 条
[1]  
BAUTIN N, 1954, AM MATH SOC, V100, P396
[2]  
Bautin N. N., 1952, MAT SBORNIK, V30, P181
[3]  
CHAPERON M, 1986, ASTERISQUE, P1
[4]  
DULAC H, 1908, B SCI MATH, V32, P230
[5]   GENERIC 3-PARAMETER FAMILIES OF VECTOR-FIELDS ON THE PLANE, UNFOLDING A SINGULARITY WITH NILPOTENT LINEAR PART - THE CUSP CASE OF CODIMENSION-3 [J].
DUMORTIER, F ;
ROUSSARIE, R ;
SOTOMAYOR, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :375-413
[6]  
Ecalle, 2020, COMMUNICATION
[7]   KEEPING TRACK OF LIMIT-CYCLES [J].
FRANCOISE, JP ;
PUGH, CC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 65 (02) :139-157
[8]  
Herve M., 1963, SEVERAL COMPLEX VARI
[9]  
HILBERT D, 1976, P S PURE MATH, V28, P1
[10]   RESOLUTION SINGULARITIES OF ALGEBRAIC VARIETY OVER FIELD OF CHARACTERISTIC ZERO .I. [J].
HIRONAKA, H .
ANNALS OF MATHEMATICS, 1964, 79 (01) :109-&