Numerical study of stochastic Volterra-Fredholm integral equations by using second kind Chebyshev wavelets

被引:10
作者
Mohammadi, Fakhrodin [1 ]
Adhami, Parastoo [2 ]
机构
[1] Hormozgan Univ, Dept Math, POB 3995, Bandarabbas, Iran
[2] Hormozgan Univ, Dept Math, POB 3995, Bandarabbas, Iran
关键词
Ito integral; stochastic Volterra-Fredholm integral equations; second kind Chebyshev wavelets; stochastic operational matrix; convergence analysis;
D O I
10.1515/rose-2016-0009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we present a computational method for solving stochastic Volterra-Fredholm integral equations which is based on the second kind Chebyshev wavelets and their stochastic operational matrix. Convergence and error analysis of the proposed method are investigated. Numerical results are compared with the block pulse functions method for some non-trivial examples. The obtained results reveal efficiency and reliability of the proposed wavelet method.
引用
收藏
页码:129 / 141
页数:13
相关论文
共 17 条
[1]  
Boggess A., 2001, 1 COURSE WAVELETS FO
[3]   Numerical solution of random differential equations:: A mean square approach [J].
Cortes, J. C. ;
Jodar, L. ;
Villafuerte, L. .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (7-8) :757-765
[4]   A computational method for solving stochastic Ito-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions [J].
Heydari, M. H. ;
Hooshmandasl, M. R. ;
Ghaini, F. M. Maalek ;
Cattani, C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 270 :402-415
[5]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546
[6]   ONE LINEAR ANALYTIC APPROXIMATION FOR STOCHASTIC INTEGRODIFFERENTIAL EQUATIONS [J].
Jankovic, Svetlana ;
Ilic, Dejan .
ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) :1073-1085
[7]  
Jiang Z. H., 1992, LECT NOTES CONTROL I, V179
[8]   Numerical approach for solving stochastic Volterra-Fredholm integral equations by stochastic operational matrix [J].
Khodabin, M. ;
Maleknejad, K. ;
Rostami, M. ;
Nouri, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) :1903-1913
[9]  
Khodabin M., 2011, IAENG INT J APPL MAT, V43, P1
[10]  
Kloeden P. E., 1992, NUMERICAL SOLUTION S