ANALYTIC SOLUTIONS FOR THE FINITE-DIFFERENCE TIME-DOMAIN AND TRANSMISSION-LINE-MATRIX METHODS

被引:18
|
作者
CHEN, ZZ
SILVESTER, PP
机构
[1] McGill University, Montreal
关键词
FINITE DIFFERENCE TIME DOMAIN (FDTD); TRANSMISSION-LINE MATRIX (TLM); EIGENVALUES; EIGENVECTORS; MODAL MATRIX;
D O I
10.1002/mop.4650070104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Eigenmodal decomposition formulations are given for numerical solutions of the finite-difference time-domain (FDTD) and the transmission-line-matrix (TLM) methods. Instead of direct simulation with these time-recursive schemes, the analysis involves two steps: (1) solving an eigenvalue problem, and (2) analytically constructing the numerical solutions in terms of the eigenvalues and eigenvectors. The numerical solution at any time step can be obtained with only O(N) computation once the corresponding eigenvalue problem has been solved. The main advantage of this technique is that the eigenvalues and eigenvectors for a problem can be stored, the numerical solutions then quickly processed with the stored data. In addition, high-frequency numerical noise can be reduced simply by discarding the related high-frequency modes. (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:5 / 8
页数:4
相关论文
共 50 条
  • [1] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [2] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [3] EQUIVALENCE OF PROPAGATION CHARACTERISTICS FOR THE TRANSMISSION-LINE MATRIX AND FINITE-DIFFERENCE TIME-DOMAIN METHODS IN 2 DIMENSIONS
    SIMONS, NRS
    BRIDGES, E
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1991, 39 (02) : 354 - 357
  • [4] Finite-difference, time-domain analysis of a folded acoustic transmission line
    Jackson, CM
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (03) : 371 - 374
  • [5] Comparison of the transmission-line matrix and finite-difference time-domain methods for a problem containing a sharp metallic edge
    Simons, NRS
    Siushansian, R
    LoVetri, J
    Cuhaci, M
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (10) : 2042 - 2045
  • [6] Stability of symplectic finite-difference time-domain methods
    Saitoh, I
    Takahashi, N
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 665 - 668
  • [7] Finite-difference, time-domain analysis of lossy transmission lines
    Roden, JA
    Paul, CR
    Smith, WT
    Gedney, SD
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1996, 38 (01) : 15 - 24
  • [8] Finite-difference, time-domain analysis of lossy transmission lines
    Int Business Machines Corp, Research Triangle Park, United States
    IEEE Trans Electromagn Compat, 1 (15-24):
  • [9] Finite-Difference Time-Domain Analysis of Dispersive Transmission Lines
    Tang, Min
    Mao, Jun-Fa
    APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 553 - 556
  • [10] Two Finite-Difference Time-Domain Methods Incorporated with Memristor
    Yang, Zaifeng
    Tan, Eng Leong
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2015, 42 : 153 - 158