APPLICATION OF KIRILLOV THEORY TO REPRESENTATIONS OF O(2,1)

被引:5
作者
DUNNE, SA
机构
[1] Physics Department, Imperial College
关键词
D O I
10.1063/1.1664914
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Kirillov construction is applied to the semisimple Lie group O(2, 1). All the unitary irreducible representations (except the supplementary series) are found, provided that complex subalgebras and complex points on orbits are admitted. The characters of the representations are calculated and the relation of their Fourier transforms to the orbits is examined.
引用
收藏
页码:860 / &
相关论文
共 7 条
[1]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[2]   ON NON-COMPACT GROUPS .2. REPRESENTATIONS OF THE 2+1 LORENTZ GROUP [J].
BARUT, AO ;
FRONSDAL, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 287 (1411) :532-&
[3]  
BERNAT P, 1965, THESIS, P37
[4]  
Kirillov A. A., 1962, RUSS MATH SURV, V17, P57, DOI [10.1070/RM1962v017n04ABEH004118, DOI 10.1070/RM1962V017N04ABEH004118]
[5]  
KIRILLOV AA, 1962, USPEKHI MATEM NAUK, V106, P57
[6]  
KOSTANT B, PRIVATE COMMUNICATIO
[7]  
Streater R. F., 1967, COMMUN MATH PHYS, V4, P217, DOI 10.1007/BF01645431