MINIMAL GRAPHS OF A TORUS, A PROJECTIVE PLANE AND SPHERES AND SOME PROPERTIES OF MINIMAL GRAPHS OF HOMOTOPY CLASSES

被引:7
作者
IVASHCHENKO, AV
YEH, YN
机构
[1] ACAD SINICA,INST MATH,TAIPEI 11529,TAIWAN
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0012-365X(94)90262-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contractible transformations of graphs consist of contractible gluing and deleting of vertices and edges of graphs. They partition all graphs into the family of homotopy classes. Contractible transformations do not change the Euler characteristic and the homology groups of graphs. In this paper we describe the minimal representatives of some homotopy classes and find the formula for computing the Euler characteristic of partite and some ether graphs. We also describe the minimal graphs of a projective plane, a torus and a sphere.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 4 条
[1]  
BARNETTE DW, 1991, J COMB THEORY B, P51
[2]  
Harary F., 1994, GRAPH THEORY, P11, DOI [DOI 10.21236/AD0705364, 10.1201/9780429493768, DOI 10.1201/9780429493768]
[3]   REPRESENTATION OF SMOOTH SURFACES BY GRAPHS - TRANSFORMATIONS OF GRAPHS WHICH DO NOT CHANGE THE EULER CHARACTERISTIC OF GRAPHS [J].
IVASHCHENKO, AV .
DISCRETE MATHEMATICS, 1993, 122 (1-3) :219-233
[4]   ON THE GLOBAL STRUCTURE OF CRYSTALLINE SURFACES [J].
TAYLOR, JE .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (03) :225-262