CONVERGENCE OF BEST ENTROPY ESTIMATES

被引:111
作者
Borwein, J. M. [1 ]
Lewis, A. S. [2 ]
机构
[1] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J5, Canada
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
moment problem; entropy; Kadec; partially finite program; normal convex integrand; duality;
D O I
10.1137/0801014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a finite number of moments of an unknown density (x) over bar on a finite measure space, the best entropy estimate-that nonnegative density x with the given moments which minimizes the Boltzmann-Shannon entropy I (x):= integral x log x- is considered. A direct proof is given that I has the Kadec property in L-1- if Y-n converges weakly to y and I(y(n)) converges to I ((y) over bar), then yn converges to (y) over bar in norm. As a corollary, it is obtained that, as the number of given moments increases, the best entropy estimates converge in L-1 norm to the best entropy estimate of the limiting problem, which is simply in the determined case. Furthermore, for classical moment problems on intervals with (x) over bar strictly positive and sufficiently smooth, error bounds and uniform convergence are actually obtained.
引用
收藏
页码:191 / 205
页数:15
相关论文
共 24 条
[1]   POLYNOMIALS OF EXTREMAL LP-NORM ON L-INFINITY-UNIT SPHERE [J].
AMIR, D ;
ZIEGLER, Z .
JOURNAL OF APPROXIMATION THEORY, 1976, 18 (01) :86-98
[2]  
BORWEIN J. M., ENTROPY MIN IN PRESS
[3]  
BORWEIN J. M., 1991, T AM MATH IN PRESS
[4]   DUALITY RELATIONSHIPS FOR ENTROPY-LIKE MINIMIZATION PROBLEMS [J].
BORWEIN, JM ;
LEWIS, AS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :325-338
[5]  
Csiszar I., 1967, STUDIA SCI MATH HUNG, V2, P299
[6]  
DACUNHACASTELLE D, 1990, ANN I H POINCARE-PR, V26, P567
[7]  
DECARREAU A., SIAM J OPTIMIZ UNPUB
[8]  
DIESTEL J, 1984, SEQUENCES SERIES BAN
[9]  
Feinerman R. P., 1974, POLYNOMIAL APPROXIMA
[10]  
Forte B., 1989, REND MAT 7, V9, P689