ADVANCES IN SILICON-CARBIDE DEVICE PROCESSING AND SUBSTRATE FABRICATION FOR HIGH-POWER MICROWAVE AND HIGH-TEMPERATURE ELECTRONICS

被引:0
作者
BRANDT, CD
AGARWAL, AK
AUGUSTINE, G
BURK, AA
CLARKE, RC
GLASS, RC
HOBGOOD, HM
MCHUGH, JP
MCMULLIN, PG
SIERGIEJ, RR
SMITH, TJ
SRIRAM, S
DRIVER, MC
HOPKINS, RH
机构
来源
COMPOUND SEMICONDUCTORS 1994 | 1995年 / 141期
关键词
D O I
暂无
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
High power density, temperature and radiation tolerant SiC electronics offer an exceptional opportunity to increase the performance and lower the cost of systems ranging from radar transmitters, to aircraft and tank controls, to missile sensors. Growth and fabrication of 2-inch diameter semi-insulating and low resistivity wafers, MESFETs with 25GHz cutoff frequencies and 2-3X the power density of GaAs devices, the world's first SiC static induction transistor, and 300 degrees C analog and digital MOSFET circuits are among recent technological advances.
引用
收藏
页码:373 / 376
页数:4
相关论文
共 50 条
[41]   Diamond–Silicon Carbide Composite as a Promising Material for Microelectronics and High-Power Electronics [J].
S. K. Gordeev ;
S. B. Korchagina ;
V. E. Zapevalov ;
V. V. Parshin ;
E. A. Serov .
Radiophysics and Quantum Electronics, 2022, 65 :434-441
[42]   HIGH-TEMPERATURE PASSIVE OXIDATION OF CHEMICALLY VAPOR-DEPOSITED SILICON-CARBIDE [J].
NARUSHIMA, T ;
GOTO, T ;
HIRAI, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1989, 72 (08) :1386-1390
[43]   RELATIONSHIP BETWEEN THE OXIDATION RESISTANCE AND THE HIGH-TEMPERATURE STRENGTH OF SILICON-CARBIDE MATERIALS [J].
GOGOTSI, YG ;
LAVRENKO, VA .
REFRACTORIES, 1985, 26 (5-6) :233-236
[44]   NICALON CONTINUOUS SILICON-CARBIDE FIBER FOR COMPOSITES AND HIGH-TEMPERATURE FIBROUS PRODUCTS [J].
DIDRICHSONS, P .
AMERICAN CERAMIC SOCIETY BULLETIN, 1983, 62 (08) :872-872
[45]   STRENGTH OF NICALON SILICON-CARBIDE FIBERS EXPOSED TO HIGH-TEMPERATURE GASEOUS ENVIRONMENTS [J].
KIM, HE ;
MOORHEAD, AJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (03) :666-669
[46]   FLOW-STRESS OSCILLATION IN SILICON-CARBIDE DURING HIGH-TEMPERATURE DEFORMATION [J].
TSUREKAWA, S ;
HASEGAWA, Y ;
YOSHINAGA, H ;
IKUHARA, Y .
JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1995, 59 (03) :263-270
[47]   HIGH-TEMPERATURE OXIDATION BEHAVIOR OF REACTION-FORMED SILICON-CARBIDE CERAMICS [J].
OGBUJI, LUJT ;
SINGH, M .
JOURNAL OF MATERIALS RESEARCH, 1995, 10 (12) :3232-3240
[48]   Challenges for high temperature silicon carbide electronics [J].
Zetterling, CM ;
Koo, SM ;
Danielsson, E ;
Liu, W ;
Lee, SK ;
Domeij, M ;
Lee, HS ;
Ostling, M .
NEW APPLICATIONS FOR WIDE-BANDGAP SEMICONDUCTORS, 2003, 764 :15-25
[49]   KINETICS AND MECHANISMS OF HIGH-TEMPERATURE CREEP IN SILICON-CARBIDE .3. SINTERED ALPHA-SILICON CARBIDE [J].
LANE, JE ;
CARTER, CH ;
DAVIS, RF .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1988, 71 (04) :281-295
[50]   Structural and optical properties of silicon-carbide nanowires produced by the high-temperature carbonization of silicon nanostructures [J].
A. V. Pavlikov ;
N. V. Latukhina ;
V. I. Chepurnov ;
V. Yu. Timoshenko .
Semiconductors, 2017, 51 :402-406