ADMISSIBLE SOLUTIONS OF THE SCHWARZIAN DIFFERENTIAL-EQUATION

被引:10
作者
ISHIZAKI, K
机构
[1] Department of Mathematics, Tokyo National College of Technology, Hachioji, Tokyo, 193
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1991年 / 50卷
关键词
ADMISSIBLE SOLUTION; SCHWARZIAN; NEVANLINNA THEORY;
D O I
10.1017/S1446788700032742
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R(z, w) be a rational function of w with meromorphic coefficients. It is shown that if the Schwarzian equation (*) {w, z}m = R(z, w) possesses an admissible solution, then d + 2m SIGMA-l(j=1)delta(alpha-j, w) less-than-or-equal-to 4m, where alpha-j are distinct complex constants. In particular, when R(z, w) is independent of z , it is shown that if (*) possesses an admissible solution w(z) , then by some Mobius transformation u = (aw + b)/(cw + d) (ad - bc not-equal 0), the equation can be reduced to one of the following forms: [GRAPHICS] where tau-j (j = 1,...,4) are distinct constants, and sigma-j (j = 1,...,4) are constants, not necessarily distinct.
引用
收藏
页码:258 / 278
页数:21
相关论文
共 12 条
[1]  
Hayman W. K., 1964, MEROMORPHIC FUNCTION
[2]  
Hille E., 1976, ORDINARY DIFFERENTIA
[4]  
ISHIZAKI K, 1988, 20 TOK NAT COLL TECH
[5]  
Jank G, 1985, MEROMORPHE FUNKTIONE
[6]  
LAINE I, 1971, ANN ACAD SCI FENN A1, V497, P1
[7]  
Mokhonko A. Z., 1971, THEORY FUNCTIONS FUN, V14, P83
[8]   FACTORABLE SOLUTIONS TO RICCATI DIFFERENTIAL EQUATIONS [J].
MUES, E .
MATHEMATISCHE ZEITSCHRIFT, 1971, 121 (02) :145-+
[9]  
Nevanlinna R, 1970, GRUNDLEHREN MATH WIS, V162
[10]  
RIETH JV, 1986, THESIS TH AACHEN