AGGREGATION STATE OF SPIN-LABELED CECROPIN-AD IN SOLUTION

被引:33
作者
MCHAOURAB, HS [1 ]
HYDE, JS [1 ]
FEIX, JB [1 ]
机构
[1] MED COLL WISCONSIN,BIOPHYS RES INST,MILWAUKEE,WI 53226
关键词
D O I
10.1021/bi00095a019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A spin-labeled derivative of the ion channel peptide cecropin AD (Fink et al., 1988) was synthesized and used to investigate its aggregation state in water and in the presence of a helix-promoting solvent. A cysteine was introduced at position 33 and spin-labeled using the methanethiosulfonate spin label. In low ionic strength aqueous solution, the peptide is monomeric, and the ESR spectrum indicates a high degree of segmental flexibility at the nitroxide attachment point, consistent with a predominantly random coil conformation. Upon addition of 5-10% (v/v) hexafluoro-2-propanol (HFP), the peptide is induced to aggregate as evidenced by significant motional restriction of the spin label and spin-spin broadening of the ESR lines. At higher concentrations of HFP, the peptide reverts to a monomeric state but retains its folded conformation. Our data suggest that between 5 and 10% HFP the peptide undergoes two structural transitions. The first transition starts at 5% and is very cooperative. Its dependence on ionic strength, temperature, and pH indicates that it involves the interconversion between a random coil and an ordered state stabilized by interpeptide electrostatic and hydrophobic interactions. The second transition, which occurs at 11% v/v HFP, is between the self-associated form and an ordered monomeric form. The analysis of our experimental results demonstrates aggregate formation at 5-10% HFP. This may be relevant to the mechanism of channel formation by cecropins in membranes.
引用
收藏
页码:11895 / 11902
页数:8
相关论文
共 37 条
[1]   THE AGGREGATION STATE OF SPIN-LABELED MELITTIN IN SOLUTION AND BOUND TO PHOSPHOLIPID-MEMBRANES - EVIDENCE THAT MEMBRANE-BOUND MELITTIN IS MONOMERIC [J].
ALTENBACH, C ;
HUBBELL, WL .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1988, 3 (04) :230-242
[2]   TRANSMEMBRANE PROTEIN-STRUCTURE - SPIN LABELING OF BACTERIORHODOPSIN MUTANTS [J].
ALTENBACH, C ;
MARTI, T ;
KHORANA, HG ;
HUBBELL, WL .
SCIENCE, 1990, 248 (4959) :1088-1092
[3]   N-TERMINAL ANALOGS OF CECROPIN-A - SYNTHESIS, ANTIBACTERIAL ACTIVITY, AND CONFORMATIONAL PROPERTIES [J].
ANDREU, D ;
MERRIFIELD, RB ;
STEINER, H ;
BOMAN, HG .
BIOCHEMISTRY, 1985, 24 (07) :1683-1688
[4]   DYNAMICS AND AGGREGATION OF THE PEPTIDE ION CHANNEL ALAMETHICIN - MEASUREMENTS USING SPIN-LABELED PEPTIDES [J].
ARCHER, SJ ;
ELLENA, JF ;
CAFISO, DS .
BIOPHYSICAL JOURNAL, 1991, 60 (02) :389-398
[5]  
BOMAN HG, 1981, TRENDS BIOCHEM SCI, V6, P306, DOI 10.1146/annurev.mi.41.100187.000535
[6]   PRINCIPLES OF PROTEIN-PROTEIN RECOGNITION [J].
CHOTHIA, C ;
JANIN, J .
NATURE, 1975, 256 (5520) :705-708
[7]   HYDROPHOBIC BONDING AND ACCESSIBLE SURFACE-AREA IN PROTEINS [J].
CHOTHIA, C .
NATURE, 1974, 248 (5446) :338-339
[8]  
CHOTHIA C, 1990, ANNU REV BIOCHEM, V59, P1007, DOI 10.1146/annurev.biochem.59.1.1007
[9]   CHANNEL-FORMING PROPERTIES OF CECROPINS AND RELATED MODEL COMPOUNDS INCORPORATED INTO PLANAR LIPID-MEMBRANES [J].
CHRISTENSEN, B ;
FINK, J ;
MERRIFIELD, RB ;
MAUZERALL, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (14) :5072-5076
[10]  
Creighton T. E., 1984, PROTEINS STRUCTURES, V2nd